

COMITÉ INTERJURISDICCIONAL DEL RÍO COLORADO (COIRCO)

Consejo de Gobierno

Presidente:

MINISTRO DEL INTERIOR Y DE TRANSPORTE Cdor. Aníbal Florencio Randazzo

Integrantes

GOBERNADOR DE LA PROVINCIA DE BUENOS AIRES

GOBERNADOR DE LA PROVINCIA DE LA PAMPA

Cr. Oscar Jorge

GOBERNADOR DE LA PROVINCIA DE MENDOZA

GOBERNADOR DE LA PROVINCIA DEL NEUQUÉN

Dr. Jorge Sapag

GOBERNADOR DE LA PROVINCIA DE RÍO NEGRO Don. Alberto Weretilneck

Comité Ejecutivo

PRESIDENTE

REPRESENTANTE DE LA NACIÓN Ing. Miguel A. Boyero

REPRESENTANTES PROVINCIALES TITULARES Y ALTERNOS

BUENOS AIRES Ing. Mauricio J. Pereyra; Ing. Mariano Dupuy

LA PAMPA Ing. Néstor P. Lastiri; Dr. Jorge Dosio

MENDOZA Agr. Gerardo R. Vaquer; Ing. Mariano Pombo Neuquén Inga. Marcela S. González; Ing. Horacio Carvalho

Río Negro Inga. Raquel Morales

GERENTE ADMINISTRATIVO Cr. B. Alberto Perez Alvado
GERENTE TÉCNICO Ing. Fernando O. Andrés

SECRETARÍA DE ENERGÍA DE LA NACIÓN

SECRETARIO DE ENERGÍA Ing. Daniel Omar Cameron

DIRECTOR NACIONAL DE EXPLORACIÓN, PRODUCCIÓN Y TRANSPORTE DE

HIDROCARBUROS Dr. Gerardo Gallardo

COMISIÓN TÉCNICA FISCALIZADORA (CTF)

Integrada por el Comité Interjurisdiccional del Río Colorado (COIRCO) y la Secretaría de Energía y Minería de la Nación (Acta Acuerdo del Neuquén 17/03/97)

GRUPO INTEREMPRESARIO

YPF SA; Petrobras Energía SA; Chevron Argentina SRL; Oldelval SA;
Petrolera Entre Lomas SA; Pluspetrol - Petro Andina Resources Ltd;
Gran Tierra - Petrolifera Petroleum Américas Ltd; Medanito SA; San Jorge Petroleum SA;
Petroquímica Comodoro Rivadavia SA y Apache Energía Argentina SRL.

PROGRAMA INTEGRAL DE CALIDAD DE AGUAS DEL RÍO COLORADO AÑO 2013

SUBPROGRAMA CALIDAD DEL MEDIO ACUÁTICO

Coordinación y Dirección General Ing. Fernando Oscar Andrés

AUTOR

Bioq. Ricardo Alcalde

Participación y Colaboración Inga. Inés Uribe Echevarría Srta. Constanza Morete Castro Mgs. Ing. Ricardo Coppo Pasante Pedro Joaquín Lurbe Pasante Iván Lizarazu

Aprobado por el Comité Ejecutivo del COIRCO, en reunión ordinaria mensual, celebrada el 8 de agosto de 2014, con la presencia de los representantes provinciales y del representante de la Nación, en ejercicio de la Presidencia. Se autoriza la utilización de la información que contiene, siempre que se cite la fuente.

Programa Integral de Calidad de Aguas del Río Colorado Año 2013

SUBPROGRAMA CALIDAD DEL MEDIO ACUÁTICO

CONTENIDO

1 Subp	rograma Calidad del Medio Acuático	9
2 Calid	ad del Agua	43
3 Sedir	nentos de Fondo	109
4 Susta	ncias tóxicas en músculo de peces	145
Conclusio	nes y Recomendaciones	167
Anexo I:	Metales y metaloides en columna de agua	173
Anexo II:	Hidrocarburos aromáticos polinucleares en columna de agua	215
Anexo III:	Ensayos ecotoxicológicos con agua	279
Anexo IV:	Metales y metaloides en sedimentos de fondo	283
Anexo V:	Hidrocarburos aromáticos polinucleares en sedimentos de fondo	291
Anexo VI:	Ensayos ecotoxicológicos con sedimentos de fondo	305
Anexo VII	Metales y metaloides en músculo de peces	311
Anexo VII	: Hidrocarburos aromáticos polinucleares en músculo de peces	319
Anexo IX:	Conductividad eléctrica, sales y concentraciones iónicas	333
Glosario		347
Agradecin	nientos	355

Contenido

1.1 Introducción	13
1.2 La Cuenca del río Colorado	18
1.2.1 Características del río Colorado	18
1.2.2 Aspectos hidrológicos	22
1.2.3 Registros de Iluvias en la cuenca	26
1.2.4 Conductividad	27
1.2.5 Sólidos disueltos totales e iones mayores	28
1.2.6 Usos del agua en la cuenca	38
1.2.7 Actividad petrolera en la cuenca del Río Colorado	39
1.2.8 Requerimientos de Autoridades al COIRCO y la CTF	40
1.3. Área de Estudio del Subprograma Calidad del Medio Acuático	40
Referencias	42

1.1 Introducción

La gestión integrada del recurso hídrico de la cuenca del río Colorado está a cargo del Comité Interjurisdiccional del Río Colorado (COIRCO), constituido por las cinco provincias condóminas de las aguas, es decir, Buenos Aires, La Pampa, Mendoza, Neuquén y Río Negro (Figura 1.1), y la activa participación del Estado Nacional a través del ejercicio de la Presidencia del Comité Ejecutivo y el Consejo de Gobierno.

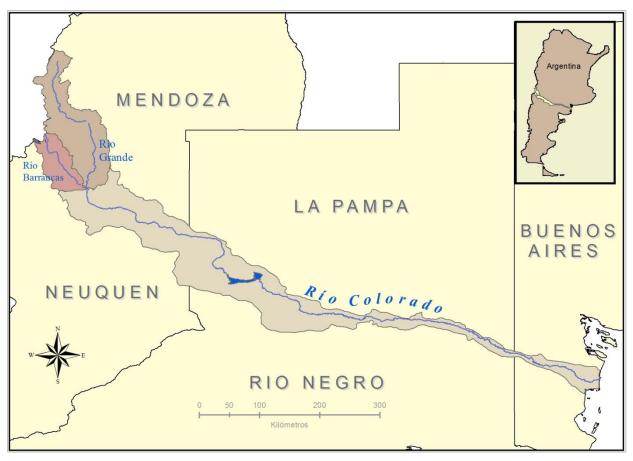


Fig. 1.1 - Cuenca del Río Colorado, subcuencas Río Grande y Río Barrancas.

La gestión integrada implica el accionar de distintas disciplinas, para asegurar los objetivos del Acuerdo del Colorado, es decir, uso para abastecimiento humano, riego, ganadería, industrial, petrolero y minero, y generación hidroeléctrica.

Inicialmente los esfuerzos del COIRCO se centralizaron en las variables de control que intervinieron en el Modelo de Distribución de las Áreas de Riego de la Cuenca del Río Colorado, es decir, caudal y conductividad eléctrica, extendiéndose a los principales cationes y aniones vinculados a la aptitud del agua como fuente para abastecimiento humano, riego y consumo de ganadería.

Transcurrida una década del accionar del COIRCO, las provincias ampliaron las facultades del organismo, en particular en lo concerniente a las cuestiones ambientales. En tal sentido, y en cumplimiento de aquellas facultades, se incrementó el número de parámetros vinculados a la calidad del agua, diagramando el Programa Integral de Calidad de Aguas del río Colorado.

El mismo está compuesto por un conjunto de subprogramas (Figura 1.2), que abarcan diferentes aspectos inherentes a la calidad del recurso, y a través de los

cuales se evalúa la presencia y significación en el ambiente acuático de diferentes sustancias, las cuales podrían tener su origen en la litología de la cuenca y en las diversas actividades desarrolladas en esa zona.

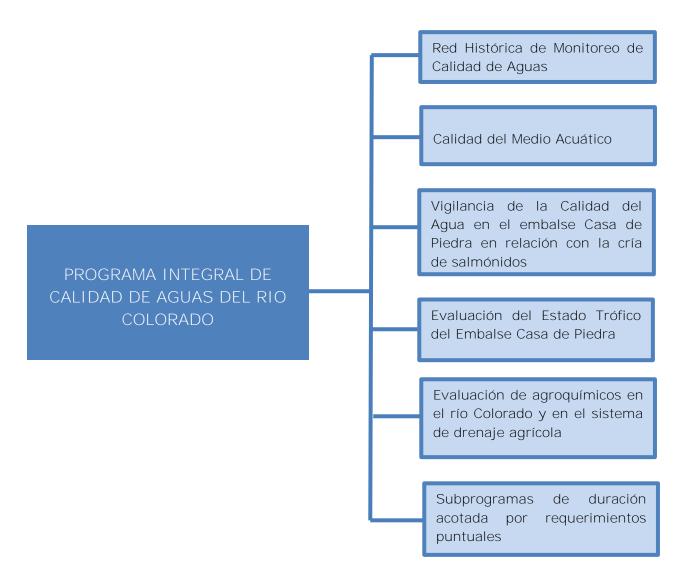


Fig. 1.2. Esquema simplificado del Programa Integral de Calidad de Aguas implementado en la Cuenca del Río Colorado.

En particular, el presente informe corresponde al Subprograma Calidad del Medio Acuático y se presentan valores medios del Subprograma Red Histórica de Monitoreo de Calidad de Aguas, así como aquellos correspondientes a las campañas del año 2013. Este último subprograma fue el primero implementado por el COIRCO, y a la fecha cumple 33 años de ejecución ininterrumpida realizando muestreos y análisis en estaciones de los ríos Grande, Barrancas y Colorado, e inclusive en afluentes del río Grande.

El diseño del Subprograma de Calidad del Medio Acuático (Figura 1.3) se basó en el diagnóstico logrado a través de un extenso relevamiento de la calidad del recurso y de las fuentes potenciales de contaminantes ejecutado entre 1997 y 1999, y tuvo como objetivo evaluar en forma permanente la posible incidencia de fuentes naturales y de las diferentes actividades productivas y de los asentamientos poblacionales existentes en el área.

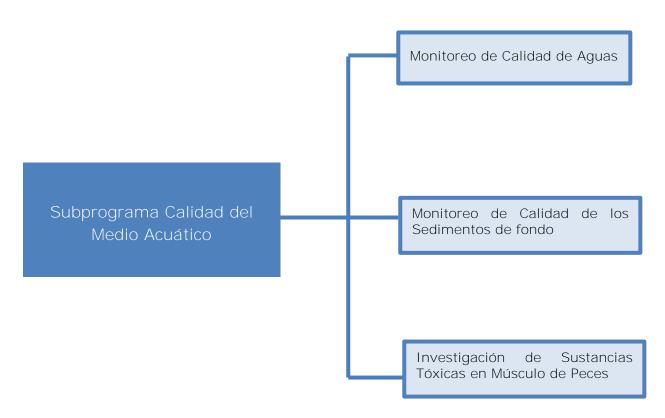


Fig. 1.3. Estudios incluidos en el Subprograma Calidad del Medio Acuático.

La litología de la alta cuenca, ubicada en la Cordillera Principal, representa una fuente natural de sustancias, las cuales potencialmente pueden alterar la calidad del agua para los diferentes usos. Las nacientes de los arroyos y de los ríos en sus primeros tramos están ubicadas en un área de intenso vulcanismo en el pasado (Sruoga, P. 2002; Llambias, E.J. 2008; Hildreth, W. 2009), al que se suman episodios ocurridos en épocas recientes (Sruoga, P. 2002; Scotti, A & Torres, D.N. 2012), representada por rocas y materiales de este origen (Figura 1.4), las cuales contienen metales pesados en su composición (Hildreth, W. *et al.*). A través de fenómenos de meteorización tiene lugar la movilización de dichas sustancias, posibilitando su ingreso en el ambiente acuático.

Fig. 1.4 – Manifestaciones de vulcanismo en la alta cuenca

Las fuentes potenciales de contaminantes vinculadas a las actividades productivas están constituidas por la explotación petrolera y la agricultura, a las cuales se agregan los asentamientos poblacionales ribereños (Fig. 1.5). Dichas fuentes son generadoras potenciales de sustancias tóxicas tales como hidrocarburos, metales y agroquímicos.

Fig. 1.5 – Fuentes potenciales de contaminantes derivadas de las actividades productivas (a) explotación petrolera, (b) agricultura y (c) asentamientos poblacionales.

La evaluación de la calidad del ambiente acuático en relación con los mencionados contaminantes, se lleva a cabo con referencia a los usos del recurso que se desea proteger. Dichos usos son: fuente de agua potable, irrigación, bebida del ganado y medio para el desarrollo de la vida acuática. La aptitud del agua para tales usos se define en función de las concentraciones detectadas de las sustancias seleccionadas, las cuales son contrastadas con valores guía internacionales (CCME 2012; O.M.S. 2008).

La evaluación de la calidad del ambiente acuático, en relación con la protección de la vida acuática, se completa a través de la investigación de la presencia de sustancias tóxicas en los sedimentos de fondo, tomándose también como referencia valores guía internacionales.

La investigación de estas sustancias en diferentes matrices, en relación con los usos previstos, implica la detección de niveles de concentración extremadamente bajos vinculados con efectos tóxicos crónicos. Esto determina que tanto las operaciones de muestreo como los análisis en laboratorio deban ser ejecutados bajo un riguroso programa de aseguramiento de la calidad, a fin de garantizar la calidad de los datos analíticos. Dichos datos posteriormente van a dar sustento al manejo de la calidad del agua en la cuenca.

Los resultados del monitoreo basado en el análisis químico, son confirmados y ampliados a través de ensayos de ecotoxicidad crónica efectuados con agua y sedimentos de fondo.

Con el fin de establecer riesgos potenciales para la salud humana en el marco del Subprograma, se monitorea la presencia de sustancias tóxicas en las partes comestibles de diferentes especies de peces presentes en el sistema del río Colorado.

A partir de los resultados del monitoreo de aguas, sedimentos de fondo y peces tiene lugar la elaboración de información sobre la calidad de aguas, la cual es difundida en forma permanente a distintos sectores de la comunidad (gubernamentales, científico-técnicos, educativos y público en general) a través de distintos medios (informes técnicos como el presente, folletos de divulgación, publicación en la página web oficial del COIRCO, audiencias públicas, charlas en establecimientos escolares y en agrupaciones de productores rurales, etc.).

El presente informe contiene los resultados obtenidos en el ciclo de estudio 2013, cuyo diseño se basó en las recomendaciones del ciclo anterior, las cuáles eran las siguientes:

- "Continuar con el monitoreo de metales/metaloides e hidrocarburos en columna de agua con el fin de obtener una evaluación permanente de la calidad del agua en el sistema del río Colorado.
- Mantener los ensayos de ecotoxicidad crónica con agua del río Colorado en los sitios evaluados en el presente ciclo, como complemento del análisis químico.
- Mantener el monitoreo de metales/metaloides y HAPs y la realización de ensayos ecotoxicológicos en sedimentos de fondo en las estaciones muestreadas en el presente ciclo a fin de verificar los resultados variables obtenidos en el río Colorado y en el embalse Casa de Piedra.
- Continuar con el monitoreo de sustancias tóxicas en músculo de peces, a fin de contar con información actualizada sobre la variación en el tiempo de las concentraciones de metales/metaloides e hidrocarburos aromáticos polinucleares. Para estos últimos se debe procurar alcanzar límites de cuantificación más bajos que los alcanzados hasta el presente."

Entre las conclusiones obtenidas en el presente ciclo 2013, se destaca que el agua del río es apta para los usos previstos como fuente de agua potable, en irrigación, ganadería y como medio para el desarrollo de la vida acuática.

1.2 La Cuenca del río Colorado

La Cuenca del río Colorado es la primera y única cuenca interprovincial de la Argentina que cuenta con un Acuerdo de Distribución de Caudales, el cual por sí solo es hecho por demás significativo, y que fue resorte de otros logros que también fortalecen las relaciones interjurisdiccionales, así como los derechos y deberes de los usuarios del recurso hídrico compartido. Sus aguas son compartidas por las provincias de Mendoza, Neuquén, La Pampa, Río Negro y Buenos Aires, que la convierten en una cuenca hídrica interprovincial.

Desde sus orígenes en la Cordillera de los Andes, hasta su desembocadura en el Océano Atlántico, presenta una extensión de 1.200 km, de los cuales 920 km corresponden al Colorado propiamente dicho.

1.2.1 Características del río Colorado

El río Colorado, perteneciente al grupo de los ríos patagónicos de vertiente atlántica, está formado por la confluencia de los ríos Grande y Barrancas (Fig.1.6), a aproximadamente a los 36°52′19″ S y 69°45′34″ O.

Fig. 1.6 – Imagen satelital de la alta cuenca del río Colorado y de las cuencas de los ríos Grande y Barrancas, ubicadas en territorio de las provincias de Mendoza y Neuquén.

El Colorado es un río de régimen nival, alimentado por la fusión de la nieve acumulada en la Cordillera Principal, en el área de la alta cuenca de los ríos Grande y Barrancas (Fig. 1.7).

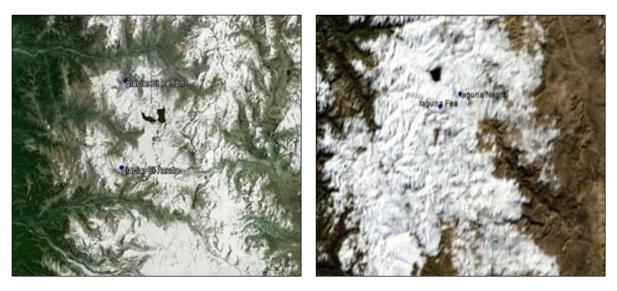


Fig. 1.7 - Acumulación nival en la alta cuenca de los ríos Barrancas y Grande (Río Grande: imagen del 13 diciembre 2007, Río Barrancas: 12 agosto 2006)

Concluido el derretimiento de la nieve, el aporte de vertientes contribuye al mantenimiento del caudal de los arroyos y ríos de la cabecera de la cuenca (Figs. 1.8 y 1.9).

Fig. 1.8 – Vertiente en la alta cuenca del río Barrancas, en proximidades de las lagunas Negra y Fea.

Fig. 1.9 - Vertientes en las nacientes del río Valenzuela.

Río Barrancas

El río Barrancas nace en la Cordillera de Los Andes de los emisarios de las lagunas Negra y Fea (Fig. 1.10) en cercanías al límite internacional con Chile. Su caudal promedio anual registrado en la estación Barrancas es 36,6 m³/s para el período 1960 – 2012 (Subsecretaría de Recursos Hídricos de la Nación).

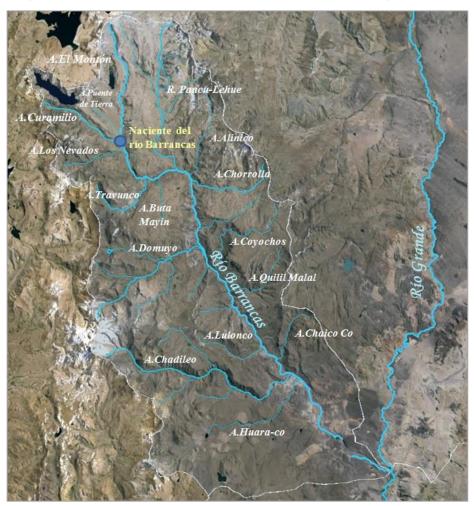


Fig. 1.10 – Naciente del río Barrancas y sus afluentes.

Río Grande

El río Grande, nace en la unión de los ríos Cobre y Tordillo (Fig. 1.11) aproximadamente a los 35°11′23″ **S** y 70°14′56″ **O**, en la Cordillera Principal, cercano al límite con Chile. Su caudal promedio anual registrado en la estación de aforo La Gotera es 110 m³/s para el período 1971 - 2012 (Subsecretaría de Recursos Hídricos de la Nación), y recorre 257 km antes de su confluencia con el río Barrancas para formar el Colorado.

Fig. 1.11 – Ríos Grande, Tordillo y Cobre y sus principales afluentes.

1.2.2 Aspectos hidrológicos

El río Colorado es de régimen nival, con crecidas que tienen inicio en los meses de octubre o noviembre, y que se extienden hasta los meses de enero o febrero, dependiendo de las condiciones climáticas y de la acumulación nívea.

Por lo dicho anteriormente, históricamente los ciclos hidrológicos en el río Colorado se definen desde el 1° de julio al 30 de junio del año siguiente.

La estación de aforo de Buta Ranquil del río Colorado, ubicada inmediatamente aguas abajo de la confluencia de los ríos Grande y Barrancas, dispone de una serie de registros diarios desde 1940 hasta la fecha (Fuente: Subsecretaría de Recursos Hídricos de la Nación). De la última publicación disponible de la Estadística Hidrológica, elaborada por dicha Subsecretaría, el derrame medio anual es de 4.675 hm³, equivalente a un módulo de 148 m³/s (período 1940 – 2012).

El derrame máximo anual es de 9.151 hm³ para el ciclo 1982-1983, mientras que el derrame mínimo registrado corresponde al ciclo hidrológico 1968 – 1969 (1.658 hm³).

En la Figura 1.12, se visualiza la distribución de la mencionada serie, actualizada al 30 de junio 2014, complementada con datos propios de COIRCO (según Normas de Manejo de Aguas, Ente Casa de Piedra).

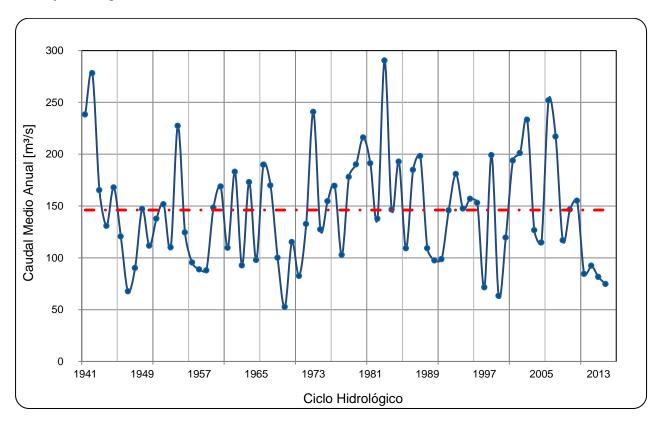


Fig. 1.12. Serie de caudales medios anuales (en revisión) del río Colorado en la estación de aforos de Buta Ranquil, aguas abajo de la confluencia de los ríos Grande y Barrancas (Fuente de información: Subsecretaría de Recursos Hídricos de la Nación; COIRCO y Ente Casa de Piedra, según Normas de Manejo de Aguas).

Además, el río Colorado presenta crecidas pluviales, generalmente entre los meses de febrero y agosto. Estas crecidas pueden alcanzar caudales instantáneos importantes (superando los 500 m³/s), sin embargo, debido a su poca duración, el derrame asociado no es significativo.

En la Estación de aforo de Buta Ranquil, se han registrado crecidas máximas con valores superiores a los 1.000 m³/s, tanto de origen nival (diciembre 1982) como pluvial (mayo 2008).

El instrumental instalado en la estación de Buta Ranquil permite obtener lecturas diarias de escala hidrométrica y registros de limnígrafo cada 5 minutos; además, se realizan aforos semanales, quincenales y mensuales, variable con los meses del año, y en situaciones singulares de crecidas. A partir de la información de campo, procesada en gabinete, se obtienen caudales medios diarios y mensuales.

En la Tabla 1.1, se indican los valores de caudales promedios mensuales y caudales instantáneos máximos y mínimos mensuales para el año calendario 2013, con registros suministrados por el Ente Casa de Piedra, en cumplimiento con las Normas de Manejo de Aguas del Embalse.

Tabla 1.1 Caudales en el Río Colorado, estación Buta Ranquil durante el año 2013.

Caudales mensuales en Buta Ranquil [m³/s] - Año 2013												
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Máximo Instantáneo	198	137	51	182	58	65	62	60	112	152	209	160
Promedio Mensual	119	70	45	53	51	51	53	51	73	107	175	132
Mínimo Instantáneo	78	53	38	39	43	45	47	42	60	65	137	94

Los valores máximos y mínimos (en revisión) se refieren a registros instantáneos. Se utilizan fórmulas hQ para la gestión operativa de la cuenca. Los promedios mensuales (en revisión) corresponden a promedios de los valores medios diarios. (Fuente de información: COIRCO – Ente Casa de Piedra, según Normas de Manejo de Aguas).

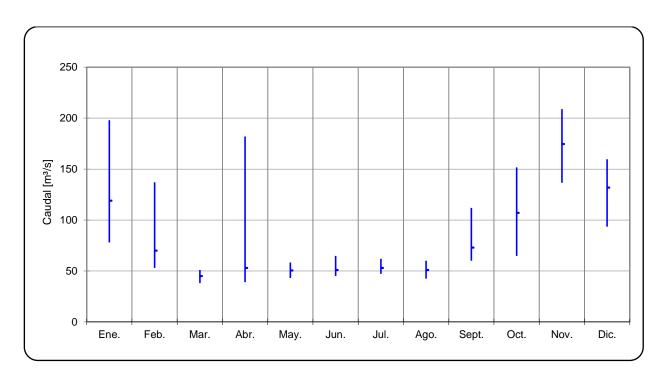


Fig. 1.13 Caudales en el Río Colorado, estación Buta Ranquil durante el año 2013.

Durante el año 2013 el caudal promedio fue de aproximadamente 81,6 m³/s (en revisión). En la Figura 1.13, se grafican los valores de la Tabla 1.1, se pueden apreciar dos picos, uno en abril y otro en el mes de noviembre, este último asociado a fusión nival.

A través de la información de la Tabla 1.1 y de la Figura 1.13, es evidente que durante el año calendario 2013, el escurrimiento del río Colorado estuvo por debajo de los valores normales o medios, alcanzando un caudal anual promedio equivalente al 55 % del módulo para la serie histórica.

Recopilando información para un período más amplio, sin limitarnos al año calendario 2013, en la Tabla 1.2 se indican los derrames para los ciclos hidrológicos del 2005 – 2006 al 2013 – 2014, los cuales se grafican en la Figura 1.14.

Tabla 1.2 Derrames anuales del río Colorado en la Estación Buta Ranquil

Ciclo Hidrológico	Derrame Anual [hm³]
2005 - 2006	7.944
2006 - 2007	6.851
2007 - 2008	3.688
2008 - 2009	4.621
2009 - 2010	4.544
2010 - 2011	2.665
2011 - 2012	2.913
2012 - 2013 ^(*)	2.573
2013 - 2014 ^(*)	2.357
Serie Histórica	4.634
Media 2005 - 2014	4.279
Media 2007 - 2014	3.388
Media 2010 - 2014	2.627

^(*)en revisión

(Fuente de información: COIRCO - Ente Casa de Piedra, según Normas de Manejo de Aguas)

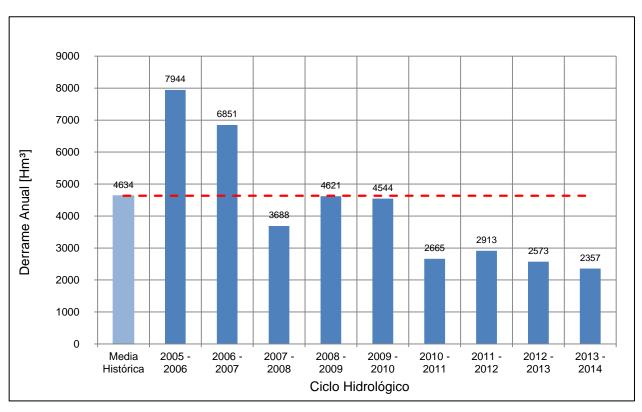


Figura 1.14 - Derrames anuales del río Colorado en la Estación Buta Ranquil (Fuente de información: COIRCO - Ente Casa de Piedra, según Normas de Manejo de Aguas).

Del análisis de los derrames escurridos en los últimos 9 ciclos, indicados en la Tabla 1.2 y la Figura 1.14, se puede apreciar que la media es prácticamente coincidente con el valor medio de la serie histórica del río Colorado, de más de 70 años, que tiene su origen en 1940.

Sin embargo, haciendo un análisis particular de los últimos 7 ciclos hidrológicos, se advierte que todos se encuentran por debajo del mencionado valor medio, y que el déficit acumulado para ese período (Julio 2007 a Junio 2014) es de 9.078 hm³, superior al derrame de un ciclo hidrológico normal.

Para el caso particular del año 2013, debido a las condiciones de oferta hídrica y de estado de desarrollo en la cuenca, el embalse cumplió con su objetivo de regulador de la cuenca, permitiendo retener la crecida nival. El 1º de enero su cota era de 273,59 msnm. La cota mínima en el período de riego fue de 271,72 msnm.

Atendiendo a las condiciones hidrológicas de la cuenca y el volumen de agua almacenada disponible, el Comité Ejecutivo del COIRCO, en función de los términos del Acuerdo del Colorado, promovió un período de veda de riego común en todas las áreas irrigadas aguas abajo de Casa de Piedra, y que durante dicho lapso se erogara un caudal mínimo extraordinario ecológico, con el objetivo de mejorar la reserva del embalse. Dicho caudal permitió satisfacer los usos aguas abajo de la Presa Casa de Piedra (consumo humano y mínimo escurrimiento) trajo como consecuencia la suspensión de la generación hidroeléctrica en Casa de Piedra y Salto Andersen (respetando las prioridades de usos establecidas en el Acuerdo del Colorado).

De esta manera y con la presencia de ocasionales Iluvias en las zonas de riego, la cota del embalse al inicio del período de riego fue de 274,10 msnm (la veda de riego permitió un ascenso de 2,38 m). Finalmente, el 31 de diciembre de 2013, su nivel fue de 273,93 msnm., es decir 0,34 m por encima de la cota al inicio del año.

1.2.3 Registros de lluvias en la cuenca

En la Tabla 1.3 se indican registros pluviométricos mensuales para el año 2013, correspondientes a las estaciones Buta Ranquil, provincia de Neuquén; Catriel, provincia de Río Negro; estación meteorológica del Puesto Caminero en Casa de Piedra, provincia de La Pampa; Pichi Mahuida, provincia de Río Negro y El Gualicho, área de riego de Río Colorado, provincia de Río Negro.

Tabla 1.3 - Registros pluviométricos mensuales en estaciones ubicadas en las márgenes del río Colorado (Año 2013), expresados en milímetros

Año 2013	Buta Ranquil	Catriel	Puesto Caminero Casa de Piedra	Pichi Mahuida	El Gualicho
Enero	5,1	32,3	61,7	49,0	80,0
Febrero	10,8	38,8	38,8	12,5	49,0
Marzo	86,7			51,0	42,0
Abril	91,5	28,6	28,6	39,0	73,0
Mayo	30,7	0,6	0,6	0,0	0,0
Junio	10,7	7,0	7,0	0,0	0,0
Julio	9,2	13,0	13,0	19,0	38,0
Agosto	25,4	5,4	5,4	0,0	0,0
Septiembre	40,7	28,0	28,0	103,0	163,0
Octubre	0,0	12,2	12,2	40,5	99,0
Noviembre	6,1	8,4	8,4	17,0	18,0
Diciembre	0,5	35,4	35,4	10,0	5,0
Total Anual [mm]	317,4	239,1	239,1	341,0	567,0

(Fuente de información: Subsecretaría de Recursos Hídricos de la Nación, COIRCO - CTF, Departamento Provincial de Aguas, Administración Provincial del Agua).

1.2.4 Conductividad

En el Modelo de Distribución de Áreas de Riego, base para el Acuerdo del Río Colorado de las cinco provincias condóminas de la Cuenca del Río Colorado, la conductividad es una de las variables tenidas en cuenta.

En la Figura 1.15 se presenta el hidrograma de caudales medios diarios de la estación Buta Ranquil, correspondiente al año 2013, junto con las determinaciones de conductividad en las estaciones del río Colorado de Buta Ranquil (río no regulado) y descarga de Casa de Piedra (río regulado), para cada una de las doce campañas mensuales.

Para el tramo no regulado, la conductividad presenta variaciones a lo largo del año. En términos generales se reduce con la crecida debida a la fusión nival (deshielo, que oscila entre octubre y febrero, variable con los ciclos hidrológicos), y se incrementa con los caudales bajos de los restantes meses (ver Figura 1.15). También sufre incrementos puntuales, y de corta duración en el caso de lluvias en el sector de la Cuenca Alta y Media del río Colorado propiamente dicho.

En el caso del tramo regulado, aguas abajo de la Presa Casa de Piedra, las variaciones en los valores de conductividad a lo largo del año son menores.

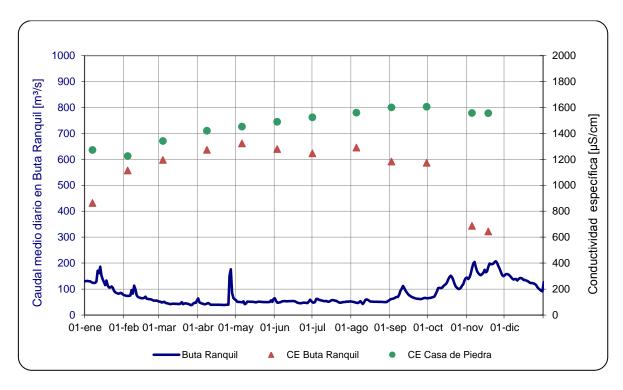


Figura 1.15. Hidrograma de caudal medio diario para la estación Buta Ranquil y registros de conductividad específica en Buta Ranquil y descarga Casa de Piedra para las campañas mensuales del Año 2013 (Fuente de información: COIRCO – Ente Casa de Piedra, según Normas de Manejo de Aguas, Monitoreos Ambientales)

1.2.5 Sólidos disueltos totales e iones mayores

El Subprograma "Red histórica del Monitoreo de Calidad de Aguas", incluye la determinación de sólidos disueltos totales e iones mayores, en una serie de estaciones en la cuenca, varias de ellas no coincidentes con las estaciones del Subprograma "Calidad del Medio Acuático".

Complementariamente a las observaciones señaladas en el punto anterior "1.2.4. Conductividad", donde se indica que este parámetro presenta variaciones estacionales y otras en ocasiones de lluvias, las condiciones de años hidrológicos secos (debajo de los valores medios) que se han presentado desde el ciclo 2007 – 2008, permitió visualizar el incremento de las concentraciones de los iones mayores en las estaciones de monitoreo de la cuenca del Río Colorado, a lo largo de los ríos Barrancas, Grande y Colorado.

A continuación, en las Figuras 1.16 a 1.24 se presenta una comparación entre los registros mensuales del año 2013 correspondientes a las estaciones de referencia del Río Barrancas (Puente Ruta Nacional N° 40, CLO), Río Grande (Bardas Blancas, CL1) y Río Colorado (Buta Ranquil, CL2), y los promedios de los registros mensuales para el período 1999 – 2009.

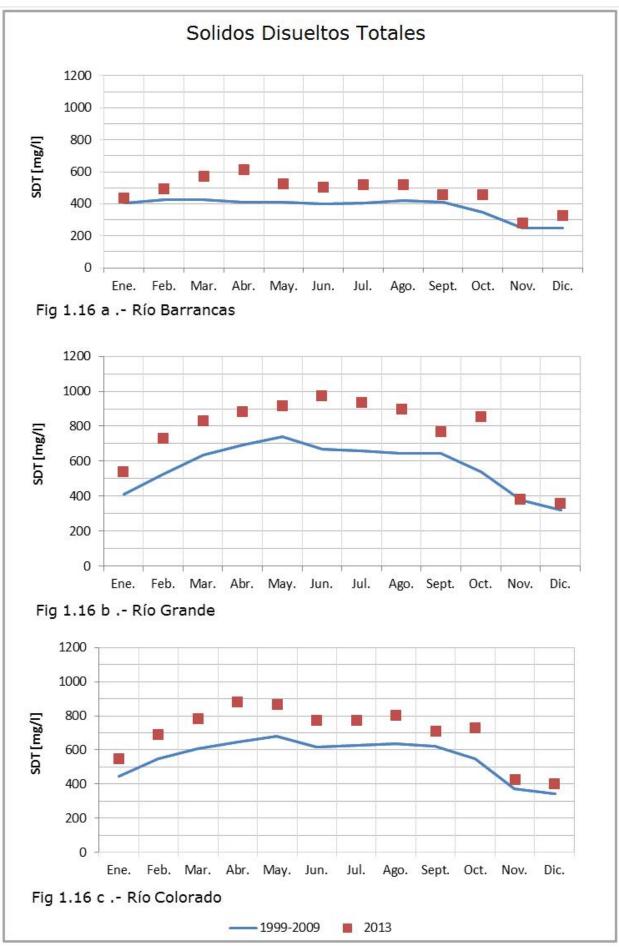


Fig. 1.16 - Registros mensuales de Sólidos Disueltos Totales correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CL0) – Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

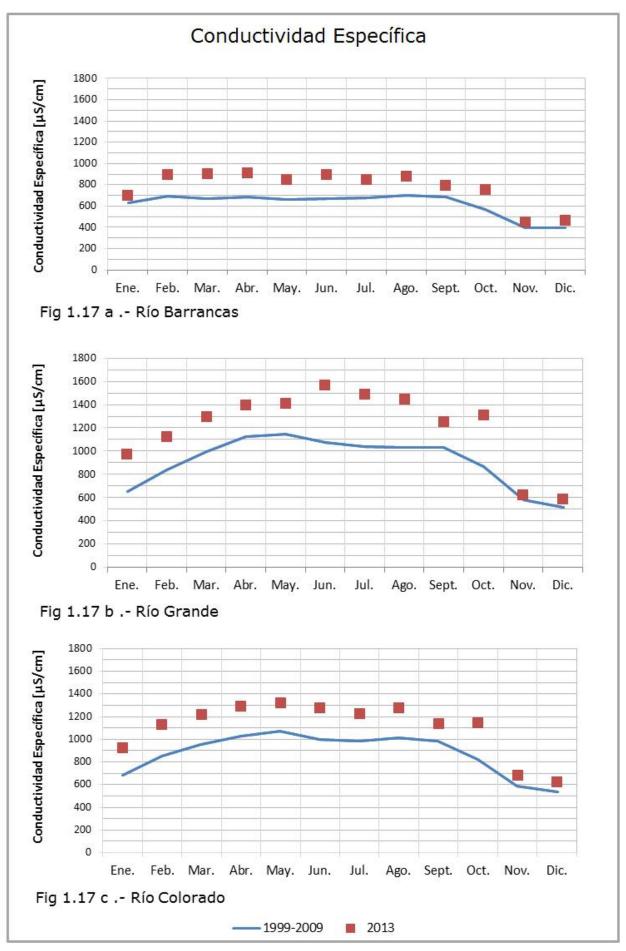


Fig. 1.17 - Registros mensuales de Conductividad Específica correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CL0) – Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

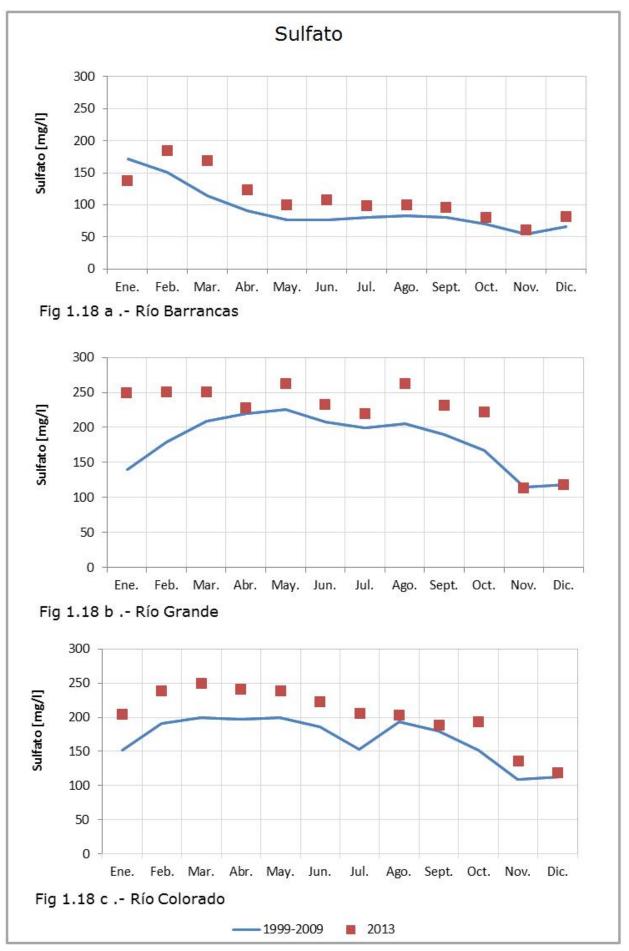


Fig. 1.18 - Registros mensuales de la concentración de Sulfato correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CLO) – Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

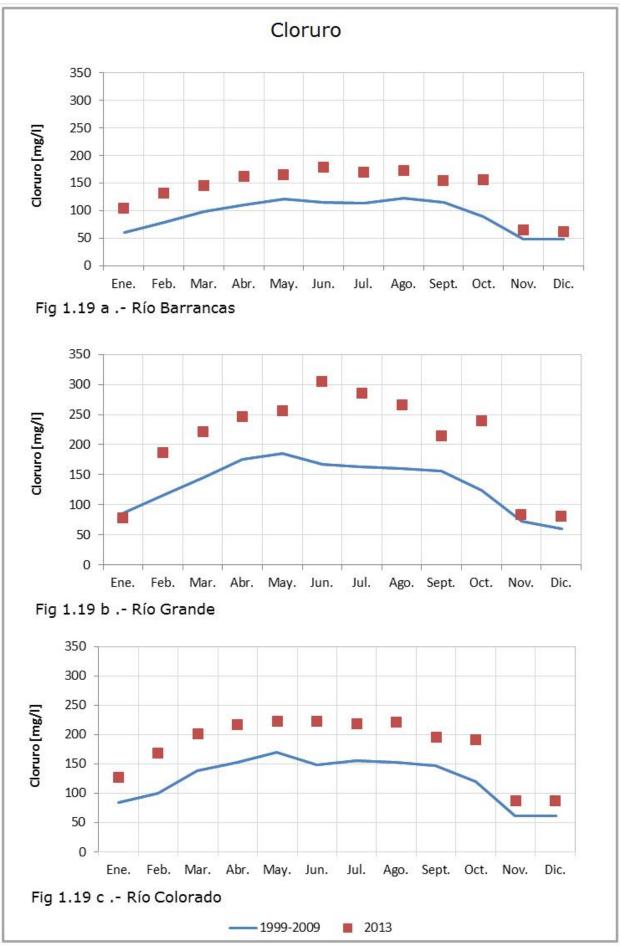


Fig. 1.19 - Registros mensuales de la concentración de Cloruro correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CLO) – Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

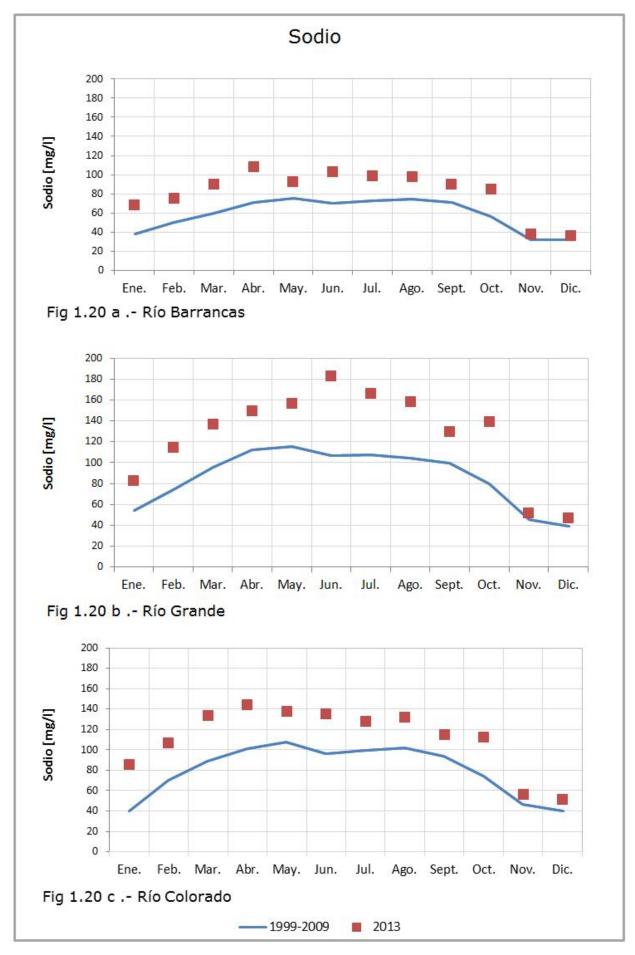


Fig. 1.20 - Registros mensuales de la concentración de Sodio correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CL0) – Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil – Río Colorado (CL2).

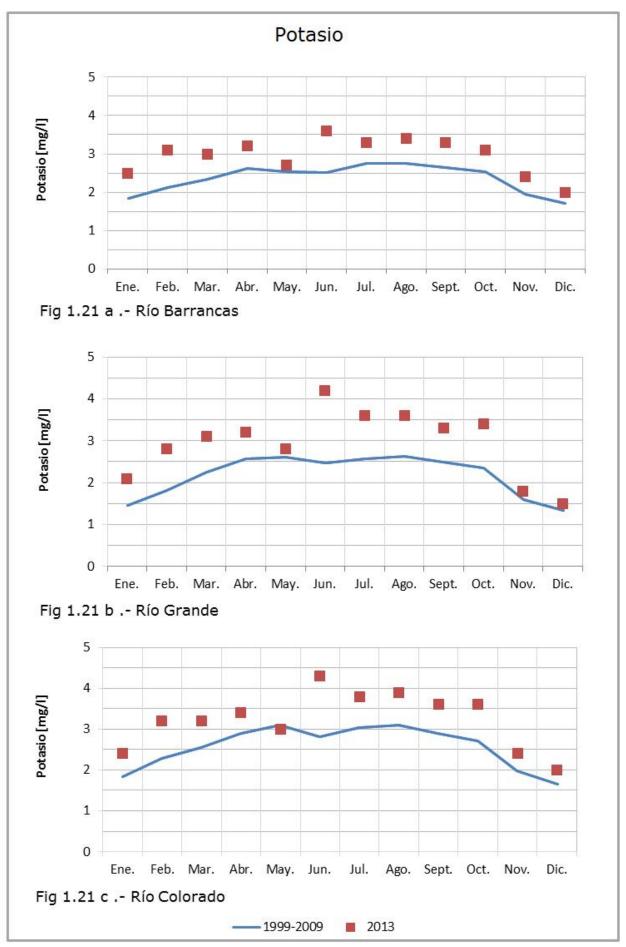


Fig. 1.21 - Registros mensuales de la concentración de Potasio correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CL0) - Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

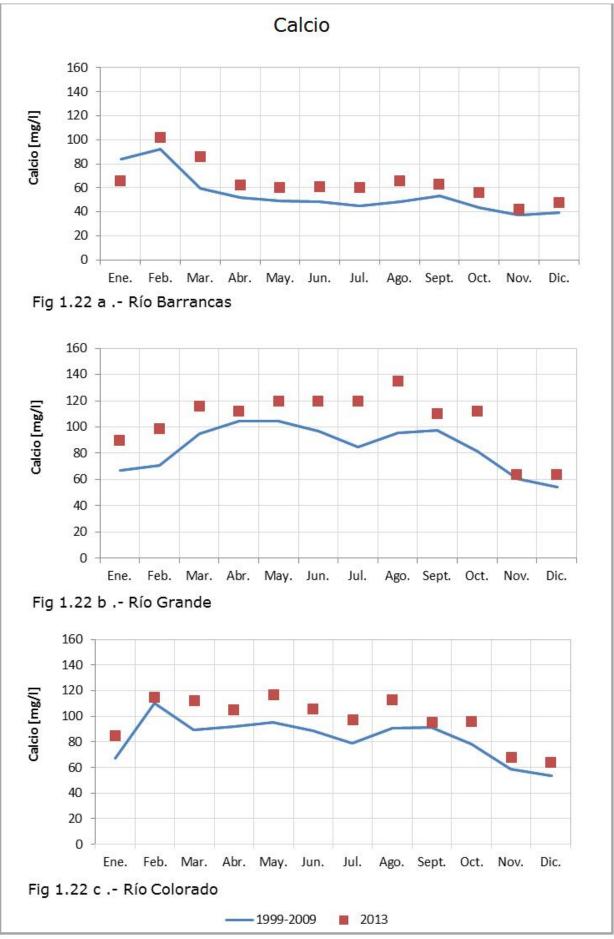


Fig. 1.22 - Registros mensuales de la concentración de Calcio correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N $^{\circ}$ 40 (CLO) – Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

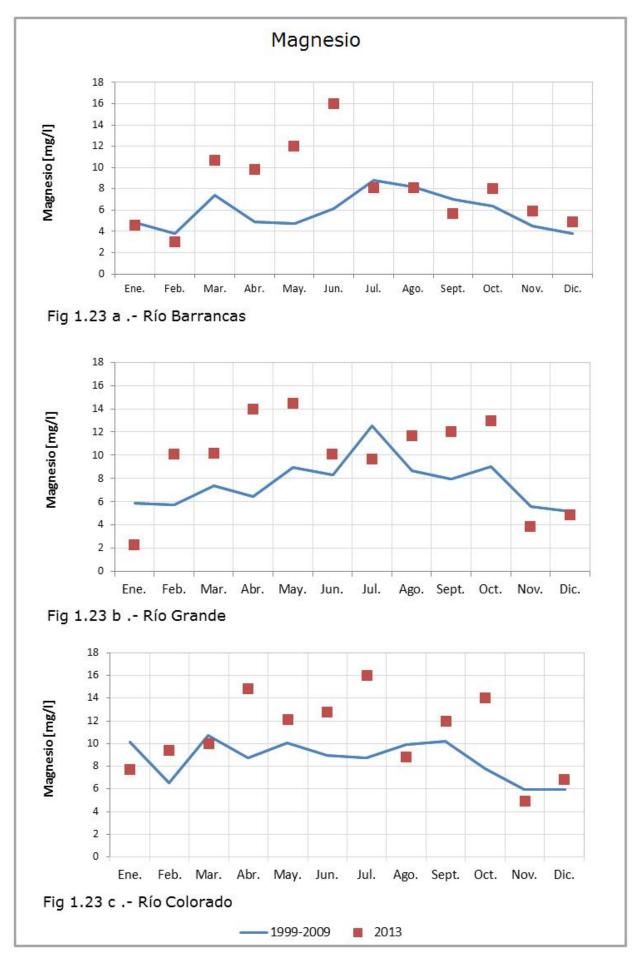


Fig. 1.23 - Registros mensuales de la concentración de Magnesio correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CL0) – Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

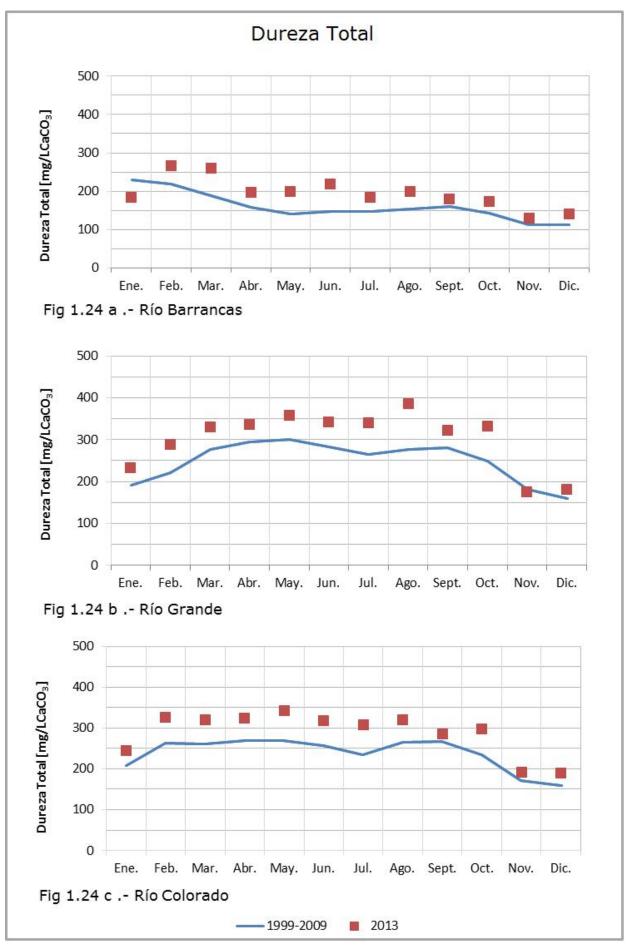


Fig. 1.24 - Registros mensuales de Dureza Total correspondientes al año 2013 en comparación con los promedios mensuales del período 1999-2009 en Puente Ruta Nacional N° 40 (CL0) - Río Barrancas, Bardas Blancas (CL1) - Río Grande, y Buta Ranquil - Río Colorado (CL2).

Complementariamente en el Anexo IX se presentan los registros mensuales para el año 2013 de las determinaciones de sólidos disueltos totales e iones mayores, correspondientes al **subprograma "Red** Histórica de Monitoreo de Calidad de **Aguas",** desarrollado por el Comité Interjurisdiccional del Río Colorado (COIRCO), para las muestras de agua obtenidas en estaciones del río Colorado, Grande y Barrancas, y sus principales afluentes. Dicho estudio tiene continuidad desde 1981 a la fecha, con muestreos que inicialmente fueron semanales, luego quincenales y actualmente son mensuales.

1.2.6 Usos del agua en la cuenca

En la Tabla 1.4 se indica el total de las áreas potencialmente regables en cada una de las provincias, según el Acuerdo firmado por las provincias ribereñas. En la misma tabla se informa el total de los consumos de agua para el ciclo 2013 – 2014, según las declaraciones de cada una de las jurisdicciones provinciales, expresados en hectómetros cúbicos anuales (Figura 1.25) y otros usos, que involucra los consumos como fuente de agua potable para consumos humanos, ganadero, industrial, petrolero y minero.

Tabla 1.4. Usos del agua en la Cuenca del Río Colorado, expresado en hectómetros

cúbicos anuales, para el Ciclo 2013 - 2014.

cubicos aridaics, par	u ci oicio 2010	2014.		
Jurisdicción	Urbano	Agrícola Ganadero	Minero	Petrolero
Buenos Aires	2,5	1.294	0	0
La Pampa	12,5	240	0	1,8
Mendoza	1,2	1	0	5,8
Neuquén	3,2	60	0	4,3
Río Negro	4,9	355	0	1,5
Total	24,3	1.950	0	13,4

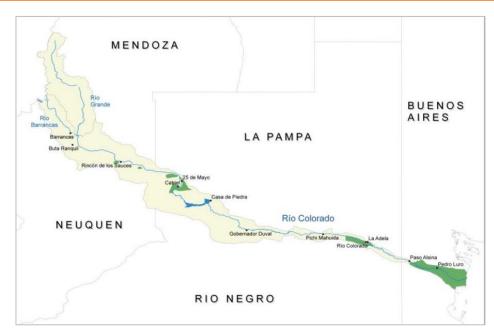


Figura 1.25 - Cuenca del Río Colorado, localidades y áreas de riego

1.2.7 Actividad petrolera en la cuenca del Río Colorado

El desarrollo de la actividad petrolera en la Cuenca del Río Colorado se extiende desde Bardas Blancas en el río Grande hasta el Embalse Casa de Piedra en el río Colorado, a lo largo de las Provincias de Mendoza, Neuquén, Río Negro y La Pampa. En el año 1997 por acuerdo de las cinco Provincias condóminas del río Colorado, Buenos Aires, La Pampa, Mendoza, Neuquén y Río Negro, y el Estado Nacional, se creó la Comisión Técnica Fiscalizadora (CTF), integrada por la Secretaría de Energía de la Nación y el Comité Interjurisdiccional del Río Colorado, para inspeccionar las actividades de exploración, explotación y transporte, con el objeto de preservar la calidad de los recursos de la cuenca.

En tal sentido, se realizan inspecciones de campo en los yacimientos, y el presente Programa de Calidad del Medio Acuático.

Con relación a las inspecciones, anualmente el COIRCO y la CTF realizan presentaciones en audiencias públicas sobre sus actividades, además de publicar el Informe Anual de Incidentes en el sitio web del organismo.

Como consecuencia de la activa dinámica de trabajo de explotación se producen incidentes diariamente en la Cuenca del Río Colorado, sin embargo, los mismos no impactan en los cursos hídricos, y generalmente quedan contenidos en los predios de sus instalaciones. Paralelamente, el saneamiento es realizado con mayor dinámica.

En particular, para el año 2013, merece destacarse que en dos ocasiones el hidrocarburo llegó al río Colorado, como consecuencia de condiciones de lluvias convectivas (inundaciones en Plantas Petroleras e inclusive en la ciudad de Rincón de los Sauces), es decir, como consecuencia de una situación extraordinaria y no propia de la actividad petrolera.

Con posterioridad a los incidentes de enero y marzo (ver más adelante en este mismo informe) se hicieron los muestreos para las determinaciones de hidrocarburos y metales pesados. En ambas campañas no se encontraron evidencias o rastros de los incidentes de la actividad petrolera sucedidos el 13 y 22 de enero, y el 30 de marzo en el área petrolera aguas arriba de Rincón de los Sauces.

En el transcurso de las contingencias se hicieron cierres preventivos de los servicios de riego, que posteriormente se habilitaron una vez confirmado la inexistencia de hidrocarburo en muestras de aguas analizadas en laboratorios regionales.

Como resultado de haber impactado el hidrocarburo en el río Colorado se implementó un Estudio de Riesgo Hídrico, a cargo de las empresas petroleras coordinado por la Provincia del Neuquén y con seguimiento del COIRCO (Provincias de Mendoza, Neuquén, La Pampa, Río Negro y Buenos Aires), con el objeto de determinar las condiciones para el diseño de las defensas aluvionales. Es evidente que los criterios adoptados sobre fines de la década del 90 habían resultado satisfactorios, sin embargo, modificaciones de las condiciones topográficas y de suelos de las subcuencas y de las características de las Iluvias convectivas, exigen la revisión de estudios, para lo cual a la fecha ya se han instalado más de una docena de estaciones meteorológicas en las áreas de los yacimientos.

1.2.8 Requerimientos de Autoridades al COIRCO y la CTF

Debido a los incidentes de la actividad petrolera ocurridos el 13 y 22 de enero, y el 30 de marzo en el área petrolera aguas arriba de Rincón de los Sauces, en la Sede Operativa del COIRCO se recibieron requerimientos judiciales y pedidos de informes desde distintos organismos. A continuación detallamos los destinatarios de las respuestas brindadas:

- Fiscalía Federal de Primera Instancia de Neuquén
- Ministerio Público Fiscal, Unidad Fiscal de Investigaciones en Materia Ambiental
- Defensor del Pueblo de la Nación
- Defensor del Pueblo de la Provincia de Río Negro
- Ministerio del Interior y Transporte
- Jefatura de Gabinete de Presidencia
- Honorable Legislatura de la Provincia de La Pampa
- Municipalidad de Rincón de los Sauces
- Medios periodísticos
- Jornada Informativa 29 de agosto 2013 en Villa Casa de Piedra

Indirectamente se interactúo con otros organismos, en algunos casos en forma directa desde la Sede Operativa del COIRCO, y otros casos a través de los Representantes Provinciales del Comité Ejecutivo

1.3. Área de Estudio del Subprograma Calidad del Medio Acuático

El área de estudio comprende desde las estaciones en los ríos Grande y Barrancas, donde no hay actividad humana en forma sistemática, hasta la estación de muestreo en Colonia Juliá y Echarren, perteneciente a la Comarca de Río Colorado – La Adela (Provincias de La Pampa y Río Negro), aguas arriba de la última derivación, en la provincia de Buenos Aires, para el suministro de agua para uso de aqua potable, riego y ganadero.

En forma independiente del presente estudio, desde COIRCO se desarrollan otros estudios a lo largo de la cuenca, o en sectores específicos, según las necesidades como son:

- Subprograma Red histórica de monitoreo de calidad de aguas, parámetros fisicoquímicos en la cuenca del río Colorado.
- Subprograma Evaluación del Estado Trófico del Embalse Casa de Piedra.
- Subprograma Vigilancia de la calidad del agua en el Embalse Casa de Piedra en relación con la cría de salmónidos.
- Subprograma Agroquímicos en el río Colorado y en los sistemas de drenaje agrícola.
- Subprograma Monitoreo de las descargas de líquidos cloacales.

• Subprograma Monitoreo de la descarga de la planta de Tratamiento de Pichi Mahuida.

En forma paralela, las jurisdicciones provinciales desarrollan estudios específicos de acuerdo a sus necesidades de abastecimiento y ejercicio de la acción de contralor y regulación, los cuales no se indican en el detalle anterior.

Referencias

- CCME, Canadian Council of Ministers of the Environment, (2012), *Canadian Environmental Quality Guidelines*, Canada
- Hildreth, W., Godoy, E., Fierstein, J., Singer, B., 2009, Laguna del Maule Volcanic Field: Eruptive History of a Quaternary basalt-to-rhyolite distributed volcanic field on the Andean rangecrest in central Chile, Servicio Nacional de Minería y Geología Chile, Boletín N° 63, 2009.
- Llambías, E. J., (2008), *El distrito volcánico de la Payunia: un paisaje lunar en nuestro planeta*. Sitios de Interés Geológico de la República Argentina. Buenos Aires, p. 264 280.
- Organización Mundial de la Salud (O.M.S.), (2008), *Guías para la Calidad del Agua Potable*, Volúmen 1: Recomendaciones, Tercera Edición.
- Scotti, A. y Torres, D.N., 2012, *Caracterización de cenizas del volcán Peteroa*, En José Ruzzante y M. Isabel López Pumarega (eds.) Cuadernos ICES 5, 1ed., Comisión Nacional de Energía Atómica, 70p, Buenos Aires.
- Sruoga, P., 2002. *El volcanismo reciente y riesgo asociado en la provincia de Mendoza*. En Trombotto, D. y Villalba, R. (eds) IANIGLA, 30 años de investigación básica y aplicada en Ciencias Ambientales. 255-260p, Mendoza

El material fotográfico empleado en las Figs. 1.4; 1.5b y 1.5c ha sido reproducido del informe COIRCO - Comité Interjurisdiccional del Río Colorado, "Estudio Determinación de áreas de riesgo hídrico - Cuenca del Río Colorado", Financiamiento Dirección Nacional de Preinversión (DINAPREI). Estudio1.EE.411; Préstamo 1896/OC-AR, BID. Informe Final Junio 2013.

Contenido

2.1 Introducción4	7
2.2 Estaciones de monitoreo4	8
2.3 Metodología de muestreo y mediciones <i>in situ</i>	9
2.4 Metodologías analíticas6	1
2.4.1 Análisis de metales y metaloides6	1
2.4.1.1 Técnicas y métodos analíticos6	2
2.4.1.2 Control de calidad de las operaciones de campo y laboratorio 6.	3
2.4.2 Análisis de hidrocarburos aromáticos polinucleares (HAPs) y alifáticos. 6	4
2.4.2.1 Técnica y métodos analíticos6	4
2.4.2.2 Control de calidad de las operaciones de campo y laboratorio 6	5
2.5 Resultados6	5
2.5.1 Metales y metaloides9	8
2.5.2 HAPs99	9
2.5.3 Valores guía9	9
2.6 Discusión	0
2.7 Ensayos ecotoxicológicos	1
2.7.1 Estaciones de monitoreo	2
2.7.2 Metodología de muestreo	2
2.7.3 Ensayos con <i>Daphnia magna</i> 10	2
2.7.4 Resultados	3
2.7.4.1 Supervivencia	3
2.7.4.2 Reproducción	4
2.7.5 Discusión	5
Poforoncias 10	c

2.1 Introducción

En el presente capítulo se presentan los resultados obtenidos en la operación de la red de monitoreo del Programa Integral de Calidad de Aguas del Río Colorado - Subprograma Calidad del Medio Acuático durante el año 2013.

El Subprograma Calidad del Medio Acuático, ejecutado en forma continua desde el año 2000, fue diseñado en base al diagnóstico obtenido a partir del extenso relevamiento de calidad de aguas llevado a cabo en la cuenca del Río Colorado entre los años 1997 y 1999 (COIRCO 1999).

En el citado relevamiento se realizó un inventario de las fuentes potenciales de contaminantes, derivadas de las actividades productivas y la presencia de asentamientos poblacionales en la cuenca y se efectuó un diagnóstico preliminar de la calidad del agua para los diferentes usos a que es sometida (fuente de agua potable, irrigación, ganadería y medio para el desarrollo de la vida acuática).

En base a las actividades productivas desarrolladas en el área y a su potencialidad de generar sustancias tóxicas o con capacidad de afectar la calidad del medio acuático, se seleccionó una lista de parámetros prioritarios. La presencia de dichos parámetros fue monitoreada en la columna de agua durante un año, en sitios representativos de fuentes potenciales de contaminantes y de usos relevantes del recurso. También se incluyeron estaciones de referencia, ubicadas en zonas libres de influencia antrópica, a los fines de verificar las condiciones de base.

Las sustancias seleccionadas para ser monitoreadas son hidrocarburos aromáticos polinucleares (HAPs) y un grupo de metales pesados y metaloides relevantes por su toxicidad para el ser humano, los cultivos, el ganado y la biota acuática.

La evaluación de la aptitud del agua para los diferentes usos considerados se lleva a cabo contrastando las concentraciones observadas con diferentes valores guía internacionales. Dichos valores guía son niveles extremadamente bajos de las sustancias de interés, haciendo necesario el empleo de técnicas analíticas basadas en instrumental de alta complejidad y un riguroso programa de aseguramiento de la calidad de las operaciones de campo y laboratorio.

Con el objeto de confirmar y ampliar las observaciones efectuadas a través de los análisis químicos, se llevan a cabo ensayos ecotoxicológicos crónicos en sitios seleccionados. Los mencionados ensayos aportan información sobre la actividad ecotoxicológica global en la columna de agua.

2.2 Estaciones de monitoreo

La Fig. 2.1 muestra la ubicación de las estaciones de monitoreo de columna de agua en el área de estudio. Dichas estaciones son identificadas como CL 0, CL 1, CL 2, CL 3, CL 4, CL 5, CL 6 y CL 8. En las mismas se extrajeron muestras con frecuencia mensual para el análisis de metales/metaloides, HAPs e hidrocarburos alifáticos.



Figura 2.1 – Estaciones de monitoreo de agua en el sistema del río Colorado

A continuación se da una descripción somera de las estaciones de monitoreo, con su ubicación geográfica e imágenes que ilustran el ambiente donde se encuentran ubicadas.

Se encuentra ubicada sobre la margen derecha del río Barrancas, a la altura del puente de la ruta Nacional N° 40 (Fig. 2.2). Son sus coordenadas geográficas 36º 49′ 02.3″ S y 69º 52′ 16.4″ O (Fig. 2.3). Es representativa de una zona libre de influencia antrópica y por lo tanto se la considera como estación de referencia. Esta estación fue establecida para el relevamiento general llevado a cabo en el período 1997-1999, designándose entonces como estación N° III y fue operada como estación de la red de monitoreo de calidad de aguas desde el año 2002 hasta el presente.

Fig. 2.2 - Río Barrancas: Puente de la Ruta Nacional N° 40.

El río Barrancas nace de la confluencia de los emisarios de las lagunas Negra y Fea, situadas en la Cordillera Principal de Los Andes y desciende hacia el sudeste por esta formación, atravesando en su último tramo una pequeña extensión de los sedimentos marinos jurásicos plegados de la Fosa del Agrio. Recibe la afluencia de numerosos arroyos y alimenta al lago Carrilauquen, desde la cual continúa su curso hasta la confluencia con el río Grande para formar el Colorado.

En la zona de las nacientes del río Barrancas, el volcán Domuyo y extensas coladas basálticas en el área de las lagunas Fea y Negra dan testimonio de la actividad volcánica en el pasado.

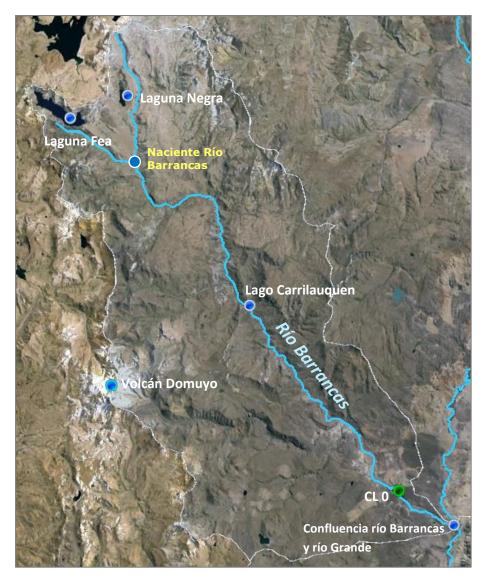


Fig. 2.3 – Río Barrancas: ubicación estación CL 0.

Se ubica en el río Grande, sobre su margen derecha, a la altura de la localidad de Bardas Blancas (Fig. 2.4). Son sus coordenadas 35° 52′ 15.4″ **S y 69°** 50′ 14″ O. Corresponde a una zona libre de influencia antrópica y representa también una estación de referencia. Fue establecida para el programa de relevamiento general llevado a cabo entre 1997 y 1999, designándose entonces como estación N° I. Es operada como estación de la red de monitoreo de calidad de aguas desde el año 2000. Geográficamente la zona que representa se ubica en las estribaciones orientales de la Cordillera Principal de Los Andes.

Fig. 2.4 - Río Grande: imagen tomada a la altura de Bardas Blancas

Marca el límite entre ésta al oeste y la franja de sedimentos marinos jurásicos plegados de la denominada Fosa del Agrio, que se introduce como una cuña entre la cordillera y el campo volcánico de Payunia. Este último, se encuentra ubicado al este del río Grande y al norte y al sur del primer tramo del Colorado.

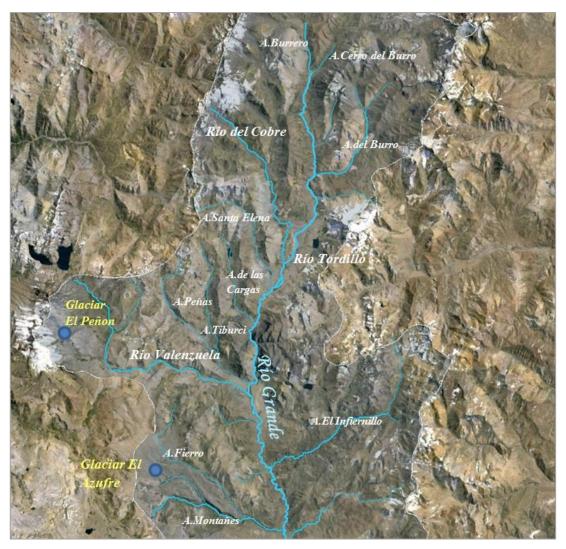


Fig. 2.5 - Alta Cuenca del río Grande

Ubicada en el río Colorado, sobre la margen derecha, a la altura de Buta Ranquil, a los 37º 07' 48.7" S y 69º 38' 40.2" O en un área donde tiene lugar la actividad petrolera (Fig. 2.6). Fue establecida para el programa de relevamiento general (1997-1999) designándose entonces como estación N° IV. Desde el año 2000 es operada como estación de la red de monitoreo de calidad de aguas.

Fig. 2.6 - Río Colorado: área Buta Ranquil.

Esta zona corresponde al denominado campo volcánico. Este último, se encuentra ubicado al este del río Grande y al norte y al sur del primer tramo del Colorado. Es una formación que presenta extensas manifestaciones volcánicas modernas (cuartarias), caracterizadas por mesetas y grandes planicies formadas por inmensas emisiones de lava, donde se destacan el volcán Tromen y, más alejado, hacia el noreste la altiplanicie del Payún y el volcán del mismo nombre (Fig. 2.7)

Fig. 2.7 -Volcán Payún Liso

Se ubica en el río Colorado sobre la margen derecha, a la altura del puente de Desfiladero Bayo (Fig. 2.8), a los 37º 21′ 57.7″ S y 69º 01′ 00.1″ O, corresponde también a un área donde tiene lugar la actividad petrolera. Fue establecida para el programa de relevamiento general (1997-1999) designándose entonces como Estación N° VII. Desde el año 2000 es operada como estación de la red de monitoreo de calidad de aguas.

Fig. 2.8 - Río Colorado - Puente ducto Desfiladero Bayo

Esta zona presenta características geológicas similares a Buta Ranquil, con extensas manifestaciones volcánicas modernas (cuartarias), representadas por mesetas y grandes planicies resultado de emisiones de lava de gran magnitud. Se destacan la sierra de Chachahuen (Fig. 2.9) al norte del río Colorado en territorio de la provincia de Mendoza y la sierra de Auca Mahuida (provincia de Neuquén) y derrames basálticos que forman relieves tabulares al sur de dicho río.

Fig. 2.9 – Sierra de Chachahuen

Está ubicada en el río Colorado, sobre la margen izquierda a la altura de Punto Unido (Fig. 2.10), a los 37º 43' 28.5" S y 67º 45' 50.7" O. Representa un área de captación y distribución de agua para diferentes usos. Fue establecida en el programa de relevamiento general (1997-1999), designándose entonces como Estación N° XIV. Se la opera desde el año 2000 como estación perteneciente a la red de monitoreo de calidad de aguas.

Fig. 2.10 - Río Colorado a la altura de Punto Unido

El área está formada por sedimentos aluviales (arenas, limos y arcillas). Al norte del río Colorado, una extensa superficie está cubierta por rocas basálticas (terciarias y cuartarias) provenientes de centros efusivos ubicados hacia el oeste, en la provincia de Mendoza. Al sur del río Colorado se presentan afloramientos de rocas sedimentarias cretácicas (Cuenca Neuquina). Particularmente al norte del río, se destaca la presencia de grandes salitrales.

Fig. 2.11 - Puente Dique - Punto Unido

Ubicada en el río Colorado, sobre la margen derecha, a la altura de la pasarela Medanito (Fig. 2.12) y en proximidades de la cola del embalse Casa de Piedra, a los 38º 01' 34.9" S y 67º 52' 53.9" O. Representa un área de actividad petrolera. Fue establecida para el programa de relevamiento general (1997-1999) designándosela como Estación N° XXII. Desde el año 2000 forma parte de la red de monitoreo de calidad de aguas.

Fig. 2.12 - Río Colorado en Pasarela Medanito

Está ubicada en la descarga del embalse Casa de Piedra (Fig. 2.13), sobre la margen derecha a los 38° 13′ 14.8″ S y 67° 11′ 18.8″ O. Tiene por objeto evaluar la calidad del agua restituida del embalse al río Colorado. Se estableció para el programa de relevamiento general (1997-1999) designándosela entonces como estación N° XXIV. Desde el año 2000 se opera como estación integrante de la red de monitoreo de calidad de aguas.

Fig. 2.13 - Río Colorado: (a) margen izquierda, aguas abajo de la restitución (zona puente de servicio de obra), (b) obra de toma del embalse Casa de Piedra.

Ubicada en el río Colorado, sobra la margen derecha, a la altura de la Colonia Juliá y Echarren, Río Negro (Fig. 2.14). Sus coordenadas son 39º 03' 04" S - 63º 57' 39" O. Es representativa de las condiciones del río aguas abajo de las descargas urbanas y retornos agrícolas de la Comarca Río Colorado – La Adela.

Fig. 2.14 - Río Colorado en Colonia Juliá y Echarren.

2.3 Metodología de muestreo y mediciones in situ

Las muestras de agua fueron extraídas con frecuencia mensual en las estaciones de monitoreo establecidas al efecto.

Los muestreos se efectuaron de acuerdo a los lineamientos generales dados en *Standard Methods for the Examination of Water and Wastewater* (APHA, AWWA, WEF, 1998) (Fig. 2.15). En las correspondientes estaciones de monitoreo se extrajeron muestras de agua para análisis de metales y metaloides, siendo envasadas en bidones de polietileno de 500 mL de capacidad (Fig. 2.16 c) y preservadas mediante la adición de ácido nítrico (HNO₃) hasta pH <2 y refrigeradas a temperatura <4 °C. Los recipientes utilizados fueron sometidos previamente a un procedimiento de limpieza consistente en: lavado con detergente y agua corriente, enjuague prolongado con agua corriente, enjuague con agua destilada (Tipo IV ASTM), secado a temperatura ambiente, inmersión durante 12 horas en solución de ácido nítrico 1+1, enjuague con agua destilada, enjuague con agua ultrapura (Tipo I ASTM) y secado a temperatura ambiente (Procedimiento Operativo Estándar PO A001, Sección 4.4.1).

Las mediciones de parámetros ambientales *in situ* (pH, temperatura y conductividad) se llevaron a cabo mediante una sonda multiparámetro *Hydrolab Minisonde*[®] (Fig. 2.16 a y b).

Fig. 2.15 - Preparación de los elementos de muestreo

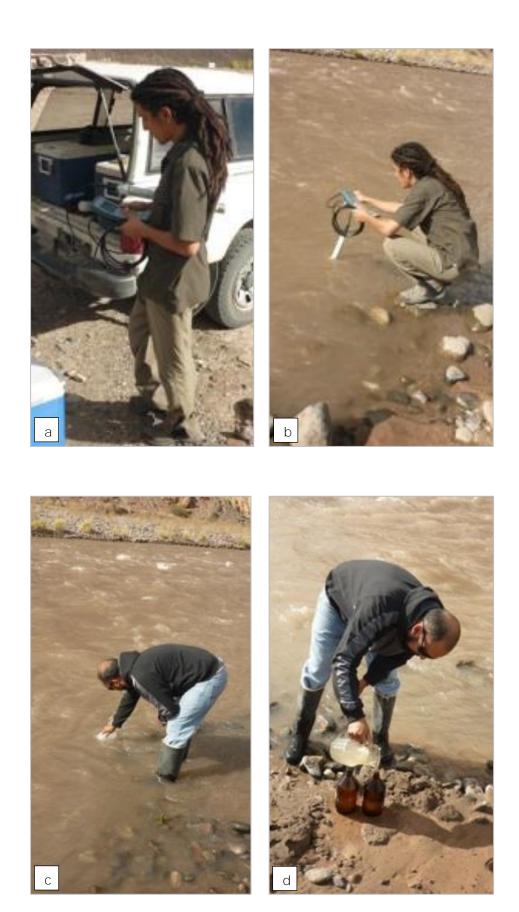


Fig. 2.16 – (a) Preparación de los elementos de medición, (b), (c) y (d) muestreo de columna líquida y mediciones *in situ*.

Fig. 2.17 - Preservación de las muestras para análisis de hidrocarburos mediante el agregado de ácido clorhídrico

Para el análisis de hidrocarburos se extrajeron muestras de agua de 2 L, siendo envasadas en recipientes de vidrio de 1 L de capacidad (Fig. 2.16 d), los cuales habían sido sometidos previamente a igual procedimiento de limpieza que los envases para análisis de metales y metaloides más un enjuague con acetona de alta pureza (grado cromatográfico) (Procedimiento Operativo Estándar PO A001, Sección 4.4.2). Las muestras fueron preservadas mediante la adición de 2 mL/L de ácido clorhídrico (HCI) 1+1 y refrigeración a temperatura <4 °C y en esas condiciones enviadas al laboratorio (Fig. 2.17 a y b).

Los muestreos y mediciones *in situ*, al igual que en los ciclos anteriores, fueron realizados por la empresa Monitoreos Ambientales.

2.4 Metodologías analíticas

2.4.1 Análisis de metales y metaloides

Los análisis de metales y metaloides en muestras de agua fueron llevados a cabo en el laboratorio del Instituto de Tecnología Minera (INTEMIN), dependiente del Servicio Geológico Minero Argentino (SEGEMAR). Este laboratorio cuenta con un sistema de calidad basado en la Norma ISO/IEC 17025 (ISO/IEC 2005).

Las concentraciones medidas de los diferentes metales y metaloides fueron informadas con las respectivas incertidumbres de medición (valores expresados a continuación con el símbolo \pm), las cuales son incertidumbres expandidas (factor de cobertura k=2) y corresponden a un nivel de confianza de aproximadamente el 95%. Dichas incertidumbres fueron calculadas en el Laboratorio del INTEMIN empleando la metodología de la guía EURACHEM/CITAC (*Quantifying Uncertainty in Analytical Measurement*).

2.4.1.1 Técnicas y métodos analíticos

Las técnicas y métodos analíticos empleados con sus respectivos límites de cuantificación se muestran en la Tabla 2.1.

Tabla 2.1 - Técnicas y métodos analíticos empleados para el análisis de metales y metaloides en agua con sus respectivos límites de cuantificación.

Metal/metaloide	Técnica analítica	Método	Límite de cuantificación (µg/L)
Arsénico	ICP	EPA 200.7	2
Cadmio	ICP	EPA 200.7	0,5
Cinc	ICP	EPA 200.7	2
Cobre	ICP	EPA 200.7	2
Cromo	ICP	EPA 200.7	1
Mercurio	A.A. por vapor frío	EPA 245.1	1
Molibdeno	ICP	EPA 200.7	2
Níquel	ICP	EPA 200.7	2
Plomo	ICP	EPA 200.7	1
Selenio	ICP	EPA 200.7	2
Uranio	ICP	EPA 200.7	0,5

AA: espectrometría de absorción atómica – ICP: espectrometría de emisión por plasma inductivo

Fig. 2.18 – Espectrómetro de emisión atómica por plasma inductivo (ICP) con detector de masas (Laboratorio INTEMIN-SEGEMAR).

2.4.1.2 Control de calidad de las operaciones de campo y laboratorio

La verificación de la calidad analítica se llevó a cabo analizando, junto con las muestras de agua, réplicas (duplicado) de una muestra de agua extraída en la estación CL 5 (Pasarela Medanito) en cada campaña. Además, se analizaron muestras replicadas (duplicado) de una muestra de la estación CL 5 y blancos replicados (duplicados) de agua ultrapura (Tipo I ASTM), sin fortificar y fortificados con 1 mL/500 mL del estándar multielemento V CERTIPUR (Merck) en una de las campañas del ciclo. En las Tablas 2.2 y 2.3 se muestran los resultados obtenidos.

Tabla 2.2 - Análisis de metales y metaloides en una muestra fortificada con estándar multielemento CERTIPUR V (Merck) extraída en la estación CL 5.

Metal/ metaloide	Concentración adicionada (µg/L)	en réplicas no forti	ones halladas (duplicados) ificadas g/L)	Concentraciones halladas en réplica (duplicados) fortificadas (µg/L)		
Arsénico	40	4±1	2±1	35±2	34±2	
Cadmio	4	<0,5	<0,5	3±1	3±1	
Cinc	4	23±1	46±3	22±2	36±2	
Cobre	4	12±1	15±1	14±1	16±1	
Cromo	4	3±1	4±1	12±1	11±1	
Molibdeno	No disponible	<2	<2	<2	<2	
Níquel	10	8±1	11±1	15±1	16±1	
Plomo	40	<1	3±1	37±2	38±2	
Uranio	No disponible	1±0,5	1±0,5	1±0,5	1±0,5	

Tabla 2.3 – Análisis de metales y metaloides en blancos de agua ultrapura fortificados con estándar multielemento CERTIPUR V (Merck)

Natal/satalaida	Concentración	Concentración	hallada (µg/L)
Metal/metaloide	adicionada (µg/L)	Blanco 1	Blanco 2
Arsénico	40	38 ± 3	32 ± 2
Cadmio	4	4 ± 1	3 ± 1
Cinc	4	20 ± 2	11 <u>±</u> 1
Cobre	4	4 ± 1	3 ± 1
Cromo	4	11 ± 1	10 ± 1
Mercurio	10	10 ± 1	10 ± 1
Molibdeno	No disponible	< 2	< 2
Níquel	10	9 ± 1	8 ± 1
Plomo	40	40 ± 2	36 ± 2
Selenio	40	36 ± 2	32 ± 2
Uranio	No disponible	< 0,5	< 0,5

2.4.2 Análisis de hidrocarburos aromáticos polinucleares (HAPs) y alifáticos

Los análisis de HAPs e hidrocarburos alifáticos en muestras de agua fueron llevados a cabo en el Laboratorio de Análisis Cromatográficos CIC de Lomas del Mirador, provincia de Buenos Aires. Este laboratorio cuenta con un sistema de calidad basado en la Norma ISO/IEC 17025 (ISO/IEC 2005).

2.4.2.1 Técnica y métodos analíticos

Para el análisis se empleó cromatografía en fase gaseosa con detección por espectrometría de masas (HP5 MS) (Fig. 2.19). Se efectuaron dos ensayos distintos para cada muestra, cualitativo y cuantitativo. En la Tabla 2.4 figuran los respectivos límites de cuantificación.

Tabla 2.4 – Límites de cuantificación del método para los diferentes HAPs analizados

HAPs	Límite de cuantificación del método (µg/L)
Naftaleno	0,010
Acenafteno	0,005
Acenaftileno	0,005
Fluoreno	0,005
Fenantreno	0,005
Antraceno	0,005
Metilnaftaleno	0,010
Dimetilnaftaleno	0,020
Metilfenantreno	0,020
Dimetilfenantreno	0,020
Fluoranteno	0,005
Pireno	0,005
Benzo[b]fluoranteno	0,005
Benzo[k]fluoranteno	0,005
Criseno	0,005
Benzoantraceno	0,005
Benzo[a]pireno	0,005
Dibenzo[a,h]antraceno	0,005
Benzo[g,h,i]perileno	0,005
Indeno[c,d]pireno	0,005

Fig. 2.19 – Cromatógrafo de fase gaseosa con detección por espectrometría de masas (laboratorio CIC S.R.L.)

2.4.2.2 Control de calidad de las operaciones de campo y laboratorio

Para el control de calidad de las operaciones de campo y laboratorio correspondientes al análisis de hidrocarburos se analizaron junto con los lotes de muestras de cada campaña, un blanco de agua ultra pura y una réplica (duplicado) de una de la muestra obtenida en la estación CL 5. El origen e identificación de estas muestras eran desconocidos por el laboratorio.

2.5 Resultados

En las Tablas 2.5 a 2.28 se presentan los resultados obtenidos en el curso del año 2013 en las mediciones *in situ* de parámetros ambientales y en los análisis en laboratorio de metales/metaloides y HAPs en muestras de agua extraídas en las estaciones de monitoreo del Subprograma Calidad del Medio Acuático. En los ANEXOS I y II del presente informe, con fines comparativos, se ha incluido la serie histórica que comprende los años 2000, 2001, 2002, 2003, 2004-2005, 2006-2007, 2008, 2009, 2010, 2011 y 2012 (COIRCO 2001, 2002, 2003, 2004, 2006, 2007, 2010, 2011a y 2011b, 2012, 2013; Alcalde *et al.* 2000, 2003, 2004, 2006; Perl 2000, 2002).

Tabla 2.5 - Parámetros medidos *in situ* en la Estación CL 0 (Río Barrancas en puente Ruta nº 40) en el período Enero 2013- Noviembre 2013.

Parámetros		Campañas												
medidos <i>in situ</i>	1 (06/01/13)	2 (03/02/13)	3 (03/03/13)	4 (07/04/13)	5 (05/05/13)	6 (02/06/13)	7 (30/06/13)	8 (04/08/13)	9 (01/09/13)	10 (29/09/13)	11 (04/11/13)	12 (17/11/13)		
Hora	16:00	14:58	14:45	15:27	15:09	14:58	15:33	15:50	14:47	14:49	15:23	14:18		
рН	7,73	7,84	7,33	7,80	7,37	7,56	7,23	8,00	7,24	6,76	8,07	7,55		
Temperatura agua (°C)	20,66	20,94	18,01	14,40	10,28	6,33	5,92	7,52	9,92	9,08	16,87	16,30		
Temperatura del aire (°C)	36,0	34,0	28,0	25,5	20,0	13,5	14,0	12,5	19,0	9,0	30,0	32,0		
Conductividad específica [µS/cm]	692	881	900	868	848	883	842	882	814	768	456	474		

Tabla 2.6 - Concentraciones de metales/metaloides en la columna de agua (μ/L) en la estación CL 0 (río Barrancas) en el período Enero 2013 - Noviembre 2013

		Campañas													
Metal/metaloide (μg/L)	1 (06/01/13)	2 (03/02/13)	3 (03/03/13)	4 (07/04/13)	5 (05/05/13)	6 (02/06/13)	7 (30/06/13)	8 (04/08/13)	9 (01/09/13)	10 (29/09/13)	11 (04/11/13)	12 (17/11/13)			
Arsénico	3±1	5±1	2±1	<2	<2	2±1	<2	2±1	2±1	<2	3±1	3±1			
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<0,5	<0,5	<0,5			
Cinc	9±1	19±1	16±1	2±1	6±1	6±1	3±1	8±1	4±1	<2	46±3	28 ±2			
Cobre	3±1	5±1	<2	<2	3±1	5±1	3±1	7±1	8±1	<2	13±1	10±1			
Cromo	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	5±1	2±1			
Mercurio	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			
Molibdeno	2±1	2±1	2±1	2±1	2±1	2±1	2±1	2±1	<2	2±1	2±1	<2			
Níquel	5±1	8±1	4±1	3±1	4±1	6±1	4±1	5±1	<2	2±1	13±1	11±1			
Plomo	5±1	14±1	3±1	<1	1±0,5	2±1	<1	<1	<3	<1	12±1	8±1			
Selenio	<2	<2	<2	<2	<2	<2	<2	<2	<3	<2	<2	<2			
Uranio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	4 ± 1	<0,5	0,8±0,1	0,5±0,1			

Tabla 2.7 - Concentraciones de HAPs en la columna de agua (μ/L) en la estación CL 0 (río Barrancas) en el período Enero 2013 - Noviembre 2013

HAPs	Campañas												
(µg/L)	1 (06/01/13)	2 (03/02/13)	3 (03/03/13)	4 (07/04/13)	5 (05/05/13)	6 (02/06/13)	7 (30/06/13)	8 (04/08/13)	9 (01/09/13)	10 (29/09/13)	11 (04/11/13)	12 (17/11/13)	
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Benzo[a]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	

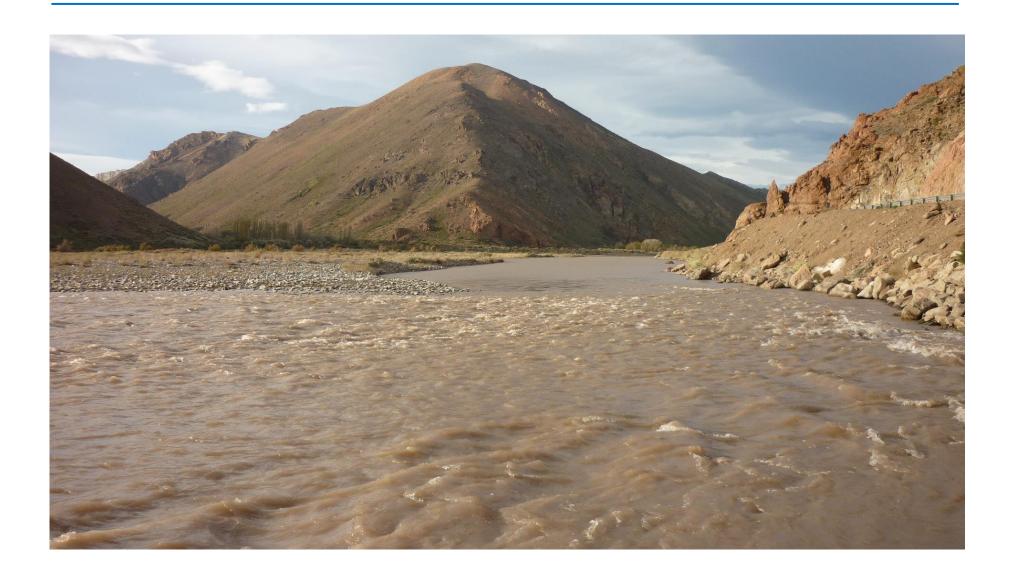


Tabla 2.8 - Parámetros medidos in situ en la Estación CL 1 (Río Grande, Bardas Blancas, aguas arriba del puente de la Ruta Nacional Nº 40) en el período Enero 2013 - Noviembre 2013.

Parámetros		Campañas												
medidos <i>in situ</i>	1 (06/01/13)	2 (03/01/13)	3 (03/03/13)	4 (07/04/13)	5 (05/05/13)	6 (02/06/13)	7 (30/06/13)	8 (04/08/13)	9 (01/09/13)	10 (29/09/13)	11 (04/11/13)	12 (17/11/13)		
Hora	18:38	17:45	17:27	18:06	17:47	17:46	18:17	18:45	17:48	17:28	18: 40	17:06		
На	7,95	7,99	7,50	8,03	7,71	7,72	7,43	7,60	7,45	6,89	8,11	7,26		
Temperatura agua (°C)	16,46	18,22	15,76	11,48	7,91	6,17	2,05	4,04	9,52	8,30	12,99	13,09		
Temperatura del aire (°C)	29,0	32,0	21,0	25,0	20,0	12,0	8,0	7,0	13,5	10,0	25,0	27,0		
Conductividad específica [µS/cm]	842	1107	1311	1275	1391	1582	1520	1469	1300	1349	625	602		

Tabla 2.9 - Concentraciones de metales y metaloides en la columna de agua (µg/L) en la estación CL 1 (Río Grande en Bardas Blancas) en el período Enero 2013 – Noviembre de 2013.

Metal/						Camı	oañas					
metaloide (µg/L)	1 (06/01/13)	2 (03/02/13)	3 (03/03/13)	4 (07/04/13)	5 (05/05/13)	6 (02/06/13)	7 (30/06/13)	8 (04/08/13)	9 (01/09/13)	10 (29/09/13)	11 (04/11/13)	12 (17/11/13)
Arsénico	<2	<2	2±1	<2	2±1	2±1	2±1	2±1	2±1	2±1	4±1	5±1
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<0,5	<0,5	<0,5
Cinc	3±1	3±1	6±1	3±1	8±1	5±1	3±1	3±1	7±1	<2	29±2	32±2
Cobre	9±1	9±1	10±1	8±1	7±1	8±1	6±1	7±1	8±1	5±1	12±1	16±1
Cromo	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	2±1
Mercurio	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Molibdeno	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Níquel	4±1	4±1	5±1	5±1	6±1	6±1	6±1	6±1	<2	4±1	4±1	6±1
Plomo	<1	<1	2±1	<1	1±0,5	1±0,5	<1	<1	<3	<1	2±1	6±1
Selenio	<2	<2	<2	<2	<2	<2	<2	<2	<3	<2	<2	<2
Uranio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	3±1	<0,5	<0,5	<0,5

Tabla 2.10 - Concentraciones de hidrocarburos aromáticos polinucleares (HAPs) en la columna de agua (µg/L) en la estación CL 1 (Río Grande en Bardas Blancas) en el período Enero 2013 - Noviembre 2013.

						Camp	oañas					
HAPs (μg/L)	1 (06/01/13)	2 (03/02/13)	3 (03/03/13)	4 (07/04/13)	5 (05/05/13)	6 (02/06/13)	7 (30/06/13)	8 (04/08/13)	9 (01/09/13)	10 (29/09/13)	11 (04/11/13)	12 (17/11/13)
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla 2.11 – Parámetros medidos *in situ* en la Estación CL 2 (Río Colorado, Buta Ranquil, Yacimiento El Portón, margen derecha, provincia de Neuquén) en el período Enero 2013 - Noviembre 2013.

Parámetros						Camp	añas					
medidos <i>in situ</i>	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/10/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Hora	08:22	08:38	08:20	08:19	08:27	08:24	08:36	08:32	08: 26	08:18	08:11	07:56
рН	7,74	7,87	7,87	7,92	7,85	7,58	7,41	7,68	7,91	7,31	7,92	7,86
Temperatura agua (°C)	16,36	19,05	7,50	11,90	9,41	6,50	4,92	5,15	8,66	7,67	13,89	13,91
Temperatura del aire (°C)	26,0	21,0	16,03	3,0	12,0	4,0	3,5	8,0	9,0	11,0	15,0	15,0
Conductividad específica [µS/cm]	864	1114	1196	1273	1323	1280	1247	1291	1184	1174	687	644

Tabla 2.12 - Concentraciones de metales/metaloides en la columna de agua (μg/L) en la estación CL 2 (Río Colorado a la altura de Buta Ranquil) en el período Enero 2013 - Noviembre 2013.

						Camp	añas					
Metal/metaloide (µg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Arsénico	2±1	3±1	3±1	2±1	2±1	3±1	2±1	3±1	3±1	2±1	5±1	6±1
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<0,5	0,5±0,1	<0,5
Cinc	5±1	9±1	6±1	5±1	12±1	11±1	5±1	5±1	9±1	2±1	31±2	49±3
Cobre	5±1	6±1	7±1	6±1	7±1	10±1	4±1	5±1	7±1	3±1	23±2	24±2
Cromo	<1	<1	<1	<1	<1	1±0,5	<1	<1	<2	<1	4 ± 1	3±1
Mercurio	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Molibdeno	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Níquel	4±1	6±1	6±1	5±1	9±1	9±1	7±1	8±1	<2	3±1	11±1	16±1
Plomo	1±0,5	3±1	2±1	1±0,5	3±1	3±1	<1	<1	<3	<1	6±1	9±1
Selenio	<2	<2	<2	<2	<2	<2	<2	<2	<3	<2	<2	<2
Uranio	<0,5	0,6±0,1	0,6±0,1	<0,5	0,8±0,1	0,8±0,1	<0,5	<0,5	<3	<0,5	1 ±0,5	0,9±0,5

Tabla 2.13 - Concentraciones de hidrocarburos aromáticos polinucleares (HAPs) en la columna de agua (μg/L) en la estación CL 2 (Río Colorado a la altura de Buta Ranquil) en el período Enero 2013 - Noviembre 2013.

LIAD						Camp	oañas					
HAPs (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

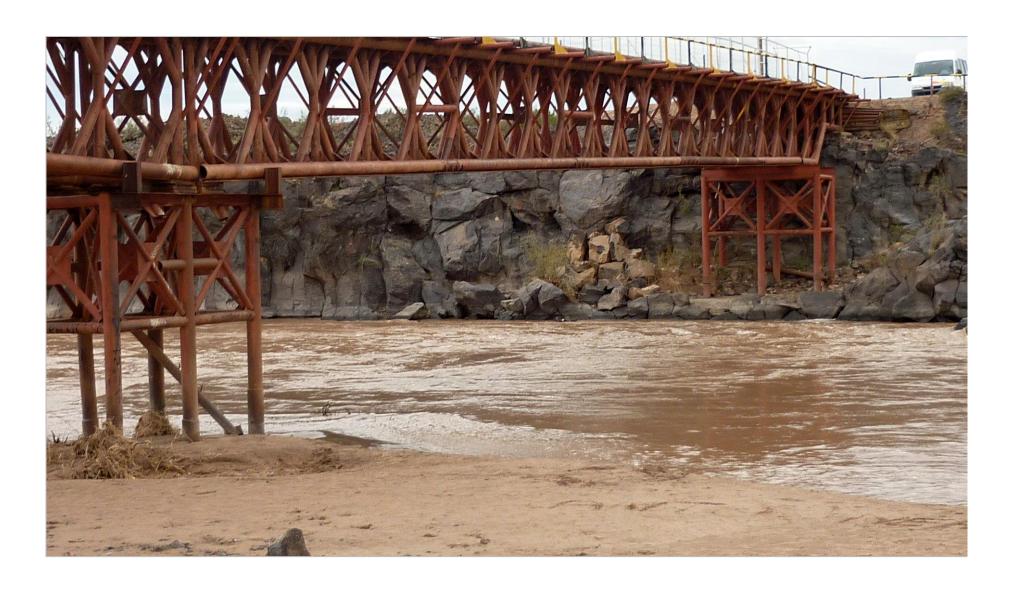


Tabla 2.14 - Parámetros medidos *in situ* en la Estación CL 3 (Río Colorado, Desfiladero Bayo, sector petrolero aguas arriba de Rincón de los Sauces, margen derecha, Pcia de Neuquén) en el período Enero 2013 - Noviembre 2013.

Parámetros						Camp	oañas					
medidos in situ	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Hora	09:52	10:19	09:49	09:52	10:03	09:57	10:06	10:00	10:08	10:01	09: 52	09: 30
рН	7,79	7,85	7,89	8,04	7,81	7,96	7,47	7,54	7,85	7,14	7,45	7,67
Temperatura agua (°C)	17,61	20,82	16,77	13,00	11,18	7,00	4,37	5,96	10,13	8,24	16,54	16,20
Temperatura del aire (°C)	30,0	30,0	17,0	9,0	13,0	5,0	5,0	12,0	12,0	14,0	24,0	21,0
Conductividad específica [µS/cm]	876	1208	1231	1331	1345	1393	1241	1335	1228	1188	750	688

Tabla 2.15 – Concentraciones de metales/metaloides en la columna de agua en la Estación CL 3 (Río Colorado, Desfiladero Bayo, sector petrolero aguas arriba de Rincón de los Sauces, margen derecha, Provincia de Neuquén) en el período Enero 2013 - Noviembre 2013

						Cam	pañas					
Metal/metaloide (μg/L)	1 (07/01/13)	2 (4/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Arsénico	2±1	8±1	3±1	3±1	3±1	3±1	2±1	3±1	3±1	2±1	6±1	6±1
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<0,5	0,6±0,1	0,5
Cinc	8±1	27±2	7±1	5±1	7±1	11±1	5±1	2±1	9±1	<2	45±3	50±3
Cobre	6±1	11±1	7±1	7±1	6±1	12±1	5±1	4±1	<2	3±1	29±2	21±1
Cromo	<1	1±0,5	<1	<1	<1	1±0,5	<1	<1	<2	<1	6±1	3±1
Mercurio	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Molibdeno	<2	<2	<2	<2	<2	<2	2±1	2±1	<2	<2	2±1	<2
Níquel	5±1	11±1	5±1	8±1	8±1	11±1	7±1	7±1	<2	3±1	20±1	16±1
Plomo	3±1	19±1	2±1	2±1	2±1	4±1	<1	<1	<3	<1	10±1	9±1
Selenio	<2	<2	<2	<2	<2	<2	<2	<2	<3	<2	<2	<2
Uranio	0,5±0,1	0,9±0,1	0,7±0,1	0,6±0,1	0,9±0,1	0,9±0,1	<0,5	<0,5	3±1	0,5±0,1	2±1	0,9±0,5

Tabla 2.16 - Concentraciones de metales/metaloides en la columna de agua en la Estación CL 3 (Río Colorado, Desfiladero Bayo, sector petrolero aguas arriba de Rincón de los Sauces, margen derecha, Provincia de Neuquén) en el período Enero 2013 - Noviembre 2013

						Camp	oañas					
HAPs (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla 2.17 Parámetros medidos *in situ* en la Estación CL 4 (Río Colorado, Punto Unido, aprovechamiento múltiple 25 de Mayo, margen izquierda, provincia de La Pampa) en el período Enero 2013 - Noviembre 2013.

						Camp	oañas					
Parámetros medidos <i>in</i> <i>situ</i>	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Hora	14:36	15:14	14:21	14:12	14:34	15:01	14:46	15:22	15: 20	15:38	15:01	14:22
рН	7,85	7,88	7,82	8,10	8,06	7,92	7,69	7,55	7,96	7,53	7,47	7,44
Temperatura agua (°C)	21,36	25,01	19,58	15,03	12,27	9,39	5,69	7,69	12,13	9,84	21,96	19,77
Temperatura del aire (°C)	26,0	34,0	25,0	23,0	18,0	22,0	13,0	18,0	15,0	14,0	32,0	24,5
Conductividad específica [µS/cm]	905	1288	1322	1394	1452	1644	1323	1330	1330	1237	812	725

Tabla 2.18 – Concentraciones de metales/metaloides (µg/L) en la columna de agua en la Estación CL 4 (Río Colorado, Punto Unido, aprovechamiento múltiple 25 de Mayo, margen izquierda, provincia de La Pampa) en el período Enero 2013 - Noviembre 2013

						Camp	oañas					
Metal/metaloide (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Arsénico	2±1	5±1	4±1	3±1	3±1	9±1	4±1	3±1	3±1	3±1	5±1	5±1
Cadmio	<0,5	<0,5	<0,5	<0,5	< 0, 1	0,5±0,1	<0,5	<0,5	<1	<0,5	<0,5	<0,5
Cinc	13±1	12±1	7±1	6±1	10±1	36±2	10±1	3±1	2±1	<2	43±2	36±2
Cobre	6±1	10±1	8±1	6±1	7±1	27±2	11±1	4±1	<2	3±1	22±2	12±1
Cromo	<1	1±0,5	<1	<1	<1	4 ± 1	<1	<1	<2	<1	6±1	1±0,5
Mercurio	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Molibdeno	<2	<2	<2	<2	<2	<2	<2	2±1	2±1	2±1	<2	<2
Níquel	5±1	13±1	6±1	7±1	9±1	32±2	12±1	7±1	<2	4±1	16±1	8±1
Plomo	2±1	5±1	2±1	2±1	3±1	17±1	5±1	<1	<3	<1	6±1	4 ± 1
Selenio	<2	<2	<2	<2	<2	<2	<2	<2	<3	<2	<2	<2
Uranio	0,6±0,1	1±0,5	0,9±0,1	0,8±0,1	1±0,5	4 ± 1	1±0,5	<0,5	3±1	0,6±0,1	2±1	0,6±0,1

Tabla 2.19 - Concentraciones de hidrocarburos aromáticos polinucleares (μg/L) en la columna de agua en la Estación CL 4 (Río Colorado, Punto Unido, aprovechamiento múltiple 25 de Mayo, margen izquierda, provincia de La Pampa en el período Enero 2013 - Noviembre 2013

						Camp	oañas					
HAPs (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla 2.20 - Parámetros medidos *in situ* en la Estación CL 5 (Río Colorado, Pasarela Medanito, margen derecha, provincia de Río Negro) en el período Enero 2013 - Noviembre 2013.

Parámetros						Cam	oañas					
medidos <i>in situ</i>	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Hora	13:40	14:17	13:23	13:12	13:32	13:36	13:44	13:41	14:03	14:04	13:32	13:30
рН	7,89	7,82	7,69	8,08	7,94	7,82	7,62	7,53	7,78	7,39	7,53	7,68
Temperatura agua (°C)	21,47	24,00	19,76	14,63	12,60	9,46	5,60	7,65	11,55	9,45	21,42	19,12
Temperatura del aire (°C)	26,0	31,0	21,0	20,0	17,5	20,0	9,0	17,0	15,5	16,0	32,0	24,0
Conductividad específica [µS/cm]	934	1421	1331	1458	1497	1767	1387	1352	1384	1308	860	740

Tabla 2.21 – Concentraciones de metales metaloides en réplicas de columna de agua (µg/L) en la estación CL 5 (río Colorado, Pasarela Medanito, margen derecha, provincia de Río Negro) en el período Enero 2013 – Noviembre 2013

						Cam	pañas					
Metal/ metaloide (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Arsénico	3±1/3±1	7±1/6±1	4±1/4±1	3±1/3±1	3±1/3±1	7±1/7±1	3±1/3±1	3±1/3±1	3±1/3±1	3±1/3±1	4±1/2±1	5±1/6±1
Cadmio	<0,5/<0,5	<0,5/<0,5	<0,5/<0,5	<0,5/0,5	<0,5/<0,5	<0,5/<0,5	<0,5/<0,5	<0,5/<0,5	<1/<1	<0,5/<0,5	<0,5/<0,5	<0,5/<0,5
Cinc	10±1/6±1	20±1/20±1	11±1/12±1	5±1/6±1	12±1/12±1	30±2/29±2	13±1/7±1	<2/4±1	5±1/4±1	2±1/2±1	23±1/46±3	81±6/44±3
Cobre	5±1/7±1	12±1/12±1	10±1/10±1	6±1/6±1	7±1/7±1	21±1/20±1	6±1/6±1	3±1/5±1	<2/<2	3±1/3±1	12±1/15±1	16±1/19±1
Cromo	<1/<1	2±1/2±1	<1/<1	<1/<1	<1/<1	4±1/4±1	<1/<1	<1/<1	<2/<2	<1/<1	3±1/4±1	2±1/2±1
Mercurio	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1	<1/<1
Molibdeno	<2/<2	<2/<2	<2/<2	2±1/2±1	<2/<2	<2/<2	<2/2±1	2±1/2±1	2±1/2±1	2±1/2±1	<2/<2	<2/<2
Níquel	5±1/5±1	15±1/16±1	8±1/8±1	8±1/8±1	11±/10±1	29±2/28±2	8±2/9±2	6±2/7±2	<2/<2	5±2/5±2	8±1/11±1	11±1/13±1
Plomo	3±1/3±1	11±1/11±1	3±1/4±1	2±1/3±1	4±1/4±1	13±1/12±1	2±1/2±1	<1/<1	<3/<3	<1/<1	<1/3±1	6±1/8±1
Selenio	<2/<2	<2/<2	<2/<2	<2/<2	<2/<2	<2/<2	<2/<2	<2/<2	<3/<3	<2/<2	<2/<2	<2/<2
Uranio	0,6±0,1/ 0,6±0,1	2±1/ 2±1	1±0,5/ 1±0,5	0,9±1/ 1±0,5	1±0,5/ 1±0,5	3±1/ 3±1	0,7±0,1/ 0,7±0,1	<0,5/ <0,5	3±1/ 3±1	0,7±0,1/ 0,7±0,1	1±0,5/ 1±0,5	0,9±0,5/ 1±0,5

Tabla 2.22 - Concentraciones de hidrocarburos aromáticos polinucleares en réplicas obtenidas en la columna de agua (µg/L) en la estación CL 5 (río Colorado a la altura de pasarela Medanito) en el período Enero 2013 - Noviembre 2013

		Campañas										
HAPs (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/12)
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla 2.23 - Parámetros medidos *in situ* en la Estación CL 6 (en la descarga del embalse Casa de Piedra, margen derecha) en el período Enero 2013 - Noviembre 2013

Parámetros		Campañas										
medidos <i>in situ</i>	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Hora	17:23	18:05	17:08	17:15	16:57	17: 40	16: 59	18:24	18:06	18: 26	17:36	16: 30
рН	8,12	7,86	7,96	7,56	8,23	8,09	7,82	7,59	7,71	7,69	7,74	7,62
Temperatura agua (°C)	21,55	22,59	20,52	17,03	15,97	12,87	9,42	7,45	8,44	9,24	15,34	17,99
Temperatura del aire (°C)	31,0	35,5	27,0	23,5	17,0	20,5	13,0	13,0	14,0	13,0	32,0	28,0
Conductividad específica [µS/cm]	1272	1225	1341	1421	1453	1490	1524	1560	16,01	1606	1557	1556

Tabla 2.24 - Concentraciones de metales y metaloides en la columna de agua (μg/L) en la estación CL 6 (en la descarga del embalse Casa de Piedra, margen derecha) en el período Enero 2013 - Noviembre 2013.

						Camp	oañas					
Metal/metaloide (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Arsénico	3±1	2±1	2±1	2±1	<2	2±1	2±1	3±1	3±1	2±1	3±1	3±1
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<0,5	<0,5	<0,5
Cinc	11±1	<2	<2	<2	4±1	<2	2±1	<2	<2	<2	37±2	32±2
Cobre	2±1	2±1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Cromo	< 1	<1	< 1	<1	<1	< 1	<1	<1	<2	<1	<1	<1
Mercurio	<1	<1	<1	<1	<1	<1	<1	< 1	< 1	<1	<1	<1
Molibdeno	3±1	3±1	3±1	4±1	4±1	4 ± 1	4 ± 1	4 ± 1	4 ± 1	4 ± 1	3±1	4 ± 1
Níquel	5±1	4 ± 1	5±1	6±1	6±1	7 ± 1	9±1	8±1	<2	4 ± 1	5±1	6±1
Plomo	<1	<1	<1	<1	<1	<1	<1	<1	<3	<1	<1	<1
Selenio	<2	<2	<2	<2	<2	<2	<2	<2	< 3	<2	<2	<2
Uranio	0,8±0,1	0,8±0,1	0,9±0,1	0,9±0,1	1±0,5	1±0,5	1±0,5	0,7±0,1	4 ± 1	1±0,5	1±0,5	1±0,5

Tabla 2.25 - Concentraciones de hidrocarburos aromáticos polinucleares (HAPs) en la columna de agua (µg/L) en la estación CL 6 (en la descarga del embalse Casa de Piedra, margen derecha) en el período Enero 2013 - Noviembre 2013.

LIAD-	Campañas											
HAPs (μg/L)	1 (07/01/13)	2 (04/02/13)	3 (04/03/13)	4 (08/04/13)	5 (06/05/13)	6 (03/06/13)	7 (01/07/13)	8 (05/08/13)	9 (02/09/13)	10 (30/09/13)	11 (05/11/13)	12 (18/11/13)
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Estación CL 8 - Área Colonia Juliá y Echarren

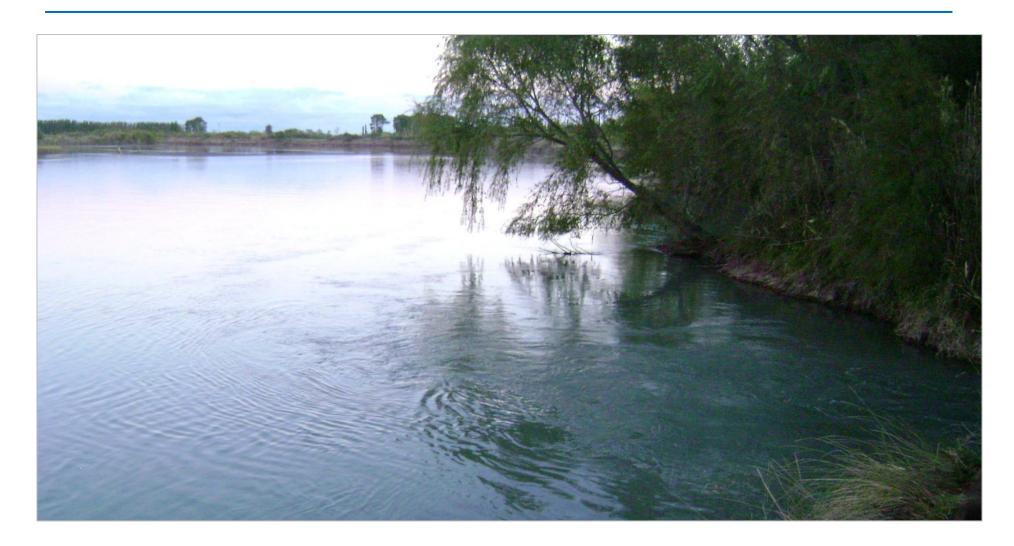


Tabla 2.26 – Parámetros medidos *in situ* en la Estación CL 8 (Río Colorado, Colonia Julia y Echarren) margen derecha, provincia de Río Negro) en el período Enero 2013 - Noviembre 2013.

						Camp	oañas					
Parámetros medidos <i>in situ</i>	1 (08/01/13)	2 (05/02/13)	3 (05/03/13)	4 (09/04/13)	5 (07/05/13)	6 (04/06/13)	7 (02/07/13)	8 (07/08/13)	9 (03/09/13)	10 (02/10/13)	11 (06/11/13)	12 (19/11/13)
Hora	15,47	19: 41	15:42	18:32	15:40	18:50	14:57	09:15	16:12	08: 34	10:22	18:46
рН	8,01	8,10	7,41	8,13	8,07	8,29	7,87	8,03	7,95	8,1	8,16	7,70
Temperatura agua (°C)	24,41	25,83	22,17	17,39	12,97	12,07	8,62	8,29	12,00	10,33	21,40	23,25
Temperatura del aire (°C)	28,0	26,0	27,0	24,0	19,0	11,0	18,0	9,0	13,0	12,0	26,0	25,0
Conductividad específica [µS/cm]	1420	1313	1421	1484	1812	1940	19,08	1696	1654	1635	1713	1712

Tabla 2.27 - Concentraciones de metales y metaloides en la columna de agua (μg/L) en la estación CL 8 (Río Colorado, Colonia Juliá y Echarren) en el período Enero 2013 - Noviembre 2013.

		Campañas										
Metal/metaloide (μg/L)	1 (08/01/13)	2 (05/02/13)	3 (05/03/13)	4 (09/04/13)	5 (07/05/13)	6 (04/06/13)	7 (02/07/13)	8 (07/08/13)	9 (03/09/13)	10 (02/10/13)	11 (06/11/13)	12 (19/11/13)
Arsénico	3±1	3±1	2±1	2±1	<2	2±1	2±1	2±1	2±1	3±1	3±1	4±1
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<1	<0,5	<0,5	<0,5
Cinc	4 ± 1	<2	<2	<2	6±1	<2	<2	<2	<2	<2	5±1	9±1
Cobre	3±1	3±1	<2	<2	<2	2±1	<2	<2	<2	<2	<2	<2
Cromo	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1
Mercurio	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Molibdeno	4 ± 1	4±1	3±1	4±1	4±1	5±1	5±1	4±1	4 ± 1	4±1	4±1	5±1
Níquel	5±1	5±1	5±1	6±1	7±1	7±1	10±1	8±1	<2	4±1	6±1	7±1
Plomo	<1	<1	<1	<1	14	<1	<1	<1	<3	<1	<1	<1
Selenio	<2	<2	<2	<2	<2	<2	<2	<2	<3	<2	<2	<2
Uranio	0,9±0,5	0,9±0,1	1±0,5	1±0,5	1±0,5	1±0,5	1±0,5	0,8±0,1	6±1	1±0,5	1±0,5	1±0,5

Tabla 2.28 - Concentraciones de HAPs en la columna de agua (µg/L) en la estación CL 8 (Río Colorado, Colonia Juliá y Echarren) en el período Enero 2013 - Noviembre 2013.

LIAD						Camp	oañas					
HAPs (μg/L)	1 (08/01/13)	2 (05/02/13)	3 (05/03/13)	4 (09/04/13)	5 (07/05/13)	6 (04/06/13)	7 (02/07/13)	8 (07/08/13)	9 (03/09/13)	10 (02/10/13)	11 (06/11/13)	12 (19/11/12)
Naftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilnaftaleno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetilfenantreno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzoantraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[g,h,i]perileno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[c,d]pireno	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

2.5.1 Metales y metaloides

Se observó la presencia frecuente de arsénico, cinc, cobre, molibdeno, níquel y plomo, como así también de uranio (Tablas 2.6, 2.9, 2.12, 2.15, 2.18, 2.21, 2.24 y 2.27). Hubo escasas detecciones de cadmio y cromo, en tanto que no se observó la presencia de selenio y mercurio.

Se detectó arsénico en 87 de las 96 muestras analizadas en el período de estudio, con una concentración promedio de 2,9 μ g/L, una mediana de 3 μ g/L, un valor mínimo de 2 μ g/L y uno máximo de 9 μ g/L. Su detección tuvo lugar en todas las estaciones de muestreo.

Las detecciones de cinc tuvieron lugar en 77 de las 96 determinaciones efectuadas, observándose una concentración promedio de 11,2 μ g/L, una mediana de 6 μ g/L, un valor mínimo de 2 μ g/L y uno máximo de 62,5 μ g/L.

Se observó la presencia de cobre en 72 de 96 muestras, con una media 6,3 μ g/L, una mediana 6 μ g/L, un valor mínimo de 2 μ g/L y uno máximo de 27 μ g/L.

Las detecciones de cinc y cobre fueron más frecuentes en las estaciones CL 0 a CL 5, siendo observado en casos aislados en las estaciones CL 6 y CL 8.

Con menor frecuencia se detectó cromo (18 de 96 determinaciones), con una media de 0,5 μ g/L, un valor mínimo de 2 μ g/L y uno máximo de 6 μ g/L, en las estaciones CL 0 a CL 5.

Se registró la presencia de molibdeno en 45 muestras, con una concentración promedio de 2,4 μ g/L, un valor mínimo de 2 μ g/L y uno máximo de 5 μ g/L. Su presencia se observó en todas las estaciones a excepción de CL 1 y CL 2. En las estaciones CL 6 y CL 8, ubicadas aguas abajo del embalse Casa de Piedra, este metal fue detectado en la totalidad de las muestras, a diferencia de las restantes estaciones, ubicadas aguas arriba del embalse, en las cuales los registros fueron esporádicos.

Con una frecuencia similar en todas las estaciones, se detectó níquel en 88 determinaciones de un total de 96, con una media de 7,1 μ g/L, una mediana de 6 μ g/L, un mínimo de 2, μ g/L y uno máximo de 32 μ g/L. En tanto que se registró la presencia de plomo en 47 muestras, con una media 2,5 μ g/L, un valor mínimo de 1 μ g/L y uno máximo 19 μ g/l, con una frecuencia similar en todas las estaciones, a excepción de CL 6 y CL 8. En esta última estación hubo una única detección.

Se observó la presencia de uranio en 66 determinaciones, con una concentración media de 0,9 μ g/L, una mediana de 0,6 μ g/L, un valor mínimo de 0,5 μ g/L y uno máximo de 6 μ g/L. La frecuencia de detección fue mayor en las estaciones CL 3 a CL 8.

Hubo detección de cadmio en 4 oportunidades, con un valor mínimo de 0,5 μ g/L (tres muestras) y uno máximo de 0,6 μ g/L (una muestra). Dichas detecciones tuvieron lugar en las estaciones CL 2, CL 3 y CL 4.

No hubo detecciones de mercurio ni de selenio en ninguna de las estaciones muestreadas durante el período de estudio.

2.5.2 HAPs

No se registró la presencia de HAPs en ninguna de las estaciones de monitoreo durante todo el período de estudio.

2.5.3 Valores guía

Los resultados obtenidos en el análisis de metales y metaloides en muestras de agua fueron evaluados tomando como referencia valores guía (Tabla 2.29) que definen la aptitud del agua para diferentes usos (WHO 1993, 1998, 2006; *Canadian Environmental Quality Guidelines* 2005, 2006, 2011; CCREM 1987).

Tabla 2.29 - Valores guía para diferentes usos del agua

		Valor guí	a (µg/L)	
Parámetro	Agua Potable	Irrigación ⁽³⁾	Ganadería ⁽⁴⁾	Vida acuática ⁽⁵⁾
Arsénico	10	100	25	5
Cadmio	3	5,1	80	0,37 ^(*)
Cinc	3.000 ⁽⁶⁾	1.000-5.000 ⁽⁷⁾	50.000	30
Cobre	2.000	200 -1.000 ⁽⁸⁾	500-1.000-5.000 ⁽⁹⁾	4 ^(*)
Cromo	50 ⁽¹⁰⁾	4,9-8,0 ⁽¹¹⁾	50	1,0 - 8,9 ⁽¹²⁾
Mercurio	6 ⁽¹³⁾	-	3	0,026
Molibdeno	70	10-50 ⁽¹⁴⁾	500	73
Níquel	70	200	1.000	150 ^(*)
Plomo	10	200	100	7 ^(*)
Selenio	10	20-50 ⁽¹⁵⁾	50	1
Uranio	15 ⁽¹⁶⁾	10	200	15

¹ Dado que en la mayoría de los suministros de agua potable con captaciones en el río Colorado, el único tratamiento de potabilización aplicado es la desinfección, se han adoptado los valores guía para el agua de bebida como valores guía de calidad de la fuente; ⁽²⁾ WHO, 1993, 1998, 2006; ⁽³⁾ CCME, (2005) *Canadian Water Quality Guidelines for the Protection of Agricultural Uses – Irrigation*; ⁽⁴⁾ CCME, (2005) *Canadian Water Quality Guidelines for the Protection of Agricultural Uses – Livestock*; ⁽⁵⁾ CCME, (2006, 2011) *Canadian Water Quality Guidelines for the Protection of Aquatic Life. –* ⁽⁶⁾ La OMS no fija valor guía para el cinc basado en consideraciones sobre la salud humana. El valor de 3000 μg/L está referido a la aceptabilidad por parte de consumidor. ⁽⁷⁾ 1.000 μg/L cuando el pH del suelo es <6,5, 5.000 μg/L cuando el pH del suelo es <6,5; ⁽⁸⁾ 200 μg/L para cereales; 1000 μg/L para cultivos tolerantes; ⁽⁹⁾ 500 μg/L para ovinos, 1000 μg/L

para bovinos, 5.000 μg/L para porcinos; ⁽¹⁰⁾ Para cromo total; ⁽¹¹⁾ 4,9 μg/L para cromo total, 8,0 para cromo trivalente; ⁽¹²⁾ 1,0 μg/L para cromo hexavalente, 8,9 μg/L para cromo trivalente; ⁽¹³⁾ Para mercurio inorgánico. ⁽¹⁴⁾ La concentración no debe exceder 10 μg/L para uso continuo en todos los suelos o 50 μg/L para uso no prolongado en suelos ácidos. ⁽¹⁵⁾ 20 μg/L para uso continuo en todos los suelos; 50 μg/L para uso intermitente en todos los suelos. ⁽¹⁶⁾ Para uranio inorgánico. ^(*) Los valores guía para la protección de la vida acuática para cadmio, cobre, níquel y plomo, son los que recomienda en la última actualización de *Canadian Environmental Quality Guidelines* (15/01/2014) para valores de dureza total mayores de 180 mg/L (cobre, níquel y plomo) y de 280 mg/L (cadmio).

La evaluación de los resultados obtenidos en el análisis de HAPs en agua se llevó a cabo tomando como referencia los valores guías para la protección de la vida acuática publicados en *Canadian Water Quality Guidelines for the Protection of Aquatic Life* (CCME 2014), los cuales figuran en la Tabla 2.30.

Tabla 2.30 - Valores guía de HAPs para la protección de la vida acuática¹

Hidrocarburo	Valor guía (µg/L)
Acenafteno	5,8
Antraceno	0,012
Benzo[a]antraceno	0,018
Benzo[a]pireno	0,015
Fluoranteno	0,04
Fluoreno	3,0
Naftaleno	1,1
Fenantreno	0,4
Pireno	0,025

⁽¹⁾ Canadian Water Quality Guidelines for the Protection of Aquatic Life, 2014

En relación con la salud humana, los resultados obtenidos fueron contrastados con el valor guía de la Organización Mundial de la Salud para benzo[a]pireno, el cual es 0,7 µg/L (WHO 1998). Este valor guía, en base a estimaciones de la potencia relativa de los HAPs (WHO 1998), da protección para el resto de los miembros del grupo.

2.6 Discusión

Metales y metaloides

Los perfiles de detección de metales/metaloides y uranio fueron similares a los observados en anteriores períodos de estudio.

Las concentraciones detectadas en todos los casos fueron inferiores a los respectivos valores guía para uso como fuente de agua potable y para uso agrícola. La única excepción la constituyó el cromo, cuyos valores en aisladas ocasiones superaron ligeramente el valor guía para irrigación. Esta situación, dada su corta duración y los niveles alcanzados, no significa un deterioro de la calidad del agua para el mencionado uso.

En relación con la protección de la vida acuática, los niveles de arsénico, cadmio, cinc, cromo y plomo, los correspondientes valores guía fueron superados en algunas oportunidades. En tanto que las concentraciones de cobre superaron el respectivo valor guía en varias oportunidades.

Las concentraciones detectadas de molibdeno, níquel y uranio fueron inferiores a los respectivos valores guía para la protección de los diferentes usos del agua (agua potable, irrigación, ganadería y medio para el desarrollo de la vida acuática).

No hubo detección de mercurio ni de selenio. No obstante, los límites de cuantificación de estos elementos son superiores a los respectivos valores guía para la protección de la vida acuática. Por lo tanto, la aptitud del agua para este uso no puede ser evaluada a través del análisis químico con el instrumental analítico disponible. Esta situación y la superación del citado valor guía por algunos metales/metaloides fue evaluada mediante la realización de ensayos ecotoxicológicos (Sección 2.7).

A partir de los resultados obtenidos, se concluye que el agua mantiene su aptitud para todos los usos a que es sometida en la cuenca.

El origen de los metales y metaloides detectados se atribuye a la litología de la alta cuenca, ya que a los mismos se los detecta en esa zona, en áreas libres de influencia antrópica.

HAPs

Al igual que en años anteriores, no hubo detección de este tipo de sustancias en ninguna de las estaciones monitoreadas.

2.7 Ensayos ecotoxicológicos

Los ensayos ecotoxicológicos crónicos con agua fueron llevados a cabo en el laboratorio del Programa de Investigación en Ecotoxicología – Departamento de Ciencias Básicas - Universidad Nacional de Luján, Luján, provincia de Buenos Aires.

2.7.1 Estaciones de monitoreo

Las muestras de agua para ensayos ecotoxicológicos fueron extraídas en el río Colorado en el mes de Octubre de 2013, en un área donde tienen lugar actividades potencialmente generadoras de contaminantes (estación CL 3) y en un sitio de uso relevante del agua (estación CL 4). En la Tabla 2.31 figuran las estaciones de muestreo con su ubicación geográfica.

Tabla 2.31 Estaciones de muestreo de agua en el río Colorado para ensayos ecotoxicológicos

Estación	Sitio	Coordenadas
CL 3	Desfiladero Bayo	S 37º 21′ 57 .7 ″ O 69° 01 ′ 00.1 ″
CL 4	Punto Unido	S 37º 43' 28.5 " O 67° 45 ' 50.7 "

2.7.2 Metodología de muestreo

En los sitios seleccionados se extrajeron muestras de 20 L de agua de acuerdo a lo indicado en el Procedimiento Operativo Estándar PO A002, Sección 4.3.5, las cuales fueron envasadas en bidones de plástico de 5 L de capacidad, previamente lavados (PO A001, Sección 4.4.6) sin dejar cámara de aire y cerrados herméticamente. Las muestras fueron conservadas con hielo y despachadas en esas condiciones, dentro de las 24 h de su recolección y tomando los recaudos necesarios para su arribo al laboratorio dentro de las 48 h.

2.7.3 Ensayos con Daphnia magna

102

(Tomado de Saenz, María Elena, Alberdi, José Luis, Tortorelli, María del Carmen; Di Marzio, Walter D. - Programa de Investigación en Ecotoxicología - Departamento de Ciencias Básicas, Universidad Nacional de Luján, Programa Integral de Calidad de Agua del Sistema del Río Colorado - Año 2013, Subprograma Calidad del Medio Acuático - Informe de Resultados, Octubre de 2013).

La evaluación de la ecotoxicidad crónica del agua se llevó a cabo utilizando como organismo de ensayo *Daphnia magna*, registrándose como variables la supervivencia y la reproducción (a través de la estimación del índice reproductivo denominado Tasa Neta de Reproducción) de la población de este microcrustáceo del zooplancton dulceacuícola, al cabo de 21 días de exposición a las muestras de agua extraídas en sitios seleccionados en el río Colorado en el mes de Octubre de 2013.

Los ensayos de ecotoxicidad crónica preliminares y definitivos se realizaron de acuerdo a los lineamientos del protocolo recomendado por U.S. EPA, 1996, *Ecological Effects Test Guidelines, OPPTS 850.1300, Daphnid Chronic Toxicity Test, Public Draft,* Office of Prevention, Pesticides and Toxic Substances, 7101,

EPA – 712-C-96-120: 1-10 y US EPA, 2002, Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms – Fourth Edition – October, EPA-821-R02-013.

A partir de los resultados observados a lo largo del período de exposición, se llevó a cabo un procesamiento estadístico de comprobación de la hipótesis nula la cual establece que las respuestas observadas en las distintas condiciones de exposición resultan ser iguales a las registradas en controles no expuestos.

El análisis estadístico de los resultados obtenidos se llevó a cabo mediante test de *Shapiro - Wilk* para normalidad de los datos, test de *Bartlett* para homogeneidad de varianzas, test exacto de Fischer, ANOVA de un factor y test de Dunnett para la comprobación de la hipótesis nula indicada. A tal efecto se utiliza el programa de computación Toxstat V 3.5, Statistica V8.

2.7.4 Resultados

2.7.4.1 Supervivencia

Los resultados obtenidos para cada una de las diferentes concentraciones analizadas y grupos control respecto del efecto tóxico crónico sobre la mortalidad de los ejemplares expuestos durante 21 días se resumen en la Tabla 2.32. Se indican los valores medios de los porcentajes de supervivencia registrados, al cabo de 21 días de exposición, a una concentración del 100% de cada una de las muestras y controles, considerando tres réplicas por tratamiento.

Tabla 2.32 - Porcentajes de supervivencia observados en una población de *Daphnia magna* al finalizar el ensayo al cabo de 21 días, para los controles y organismos expuestos a dos muestras líquidas del río Colorado. Los resultados representan el promedio de tres réplicas por tratamiento y control.

Muestra	Supervivencia (%)	F^{1} $(\alpha = 0.05)$	b²
Control ³	96,66		
Desfiladero Bayo (CL 3)	96,66	23	29
Punto Unido (CL 4)	93,33	23	28

¹ Valor Crítico de Fisher (F); a un nivel de significación del 0,05 ² Parámetro de Fisher; si **b** es mayor que F no existe diferencia significativa entre el Control y el Tratamiento considerado, a un nivel de significación de 0,05³. Población control, mantenida durante 21 días en las condiciones indicadas para el ensayo en agua de dilución, en ausencia de muestra. El Valor Critico de Fisher (a=0.05) es 23.0. El valor de b para las muestras es 28 y 29. Si b es mayor que 23.0 no hay diferencias significativas entre el control y los organismos expuestos a las muestras de las estaciones 3 y 4, al nivel de significación de 0.05.

Los resultados obtenidos indican que las muestras líquidas provenientes de las Estaciones CL 3 y CL 4 no resultan ejercer efecto tóxico crónico significativo (p>0,05), respecto de los controles sobre la supervivencia de la población de *Daphnia magna* expuesta durante 21 días, en las condiciones de los ensayos.

2.7.4.2 Reproducción

Los resultados obtenidos para cada una de las muestras analizadas respecto del efecto tóxico crónico sobre la reproducción, expresada como Tasa Neta de Reproducción, de la población de *Daphnia magna* expuesta a las muestras durante 21 días se resumen en la Tabla 2.33. Se indican los valores medios y la desviación estándar de la Tasa Neta de Reproducción calculada, al cabo de 21 días de exposición a cada una de las muestras analizadas del Río Colorado y control, considerando tres réplicas por tratamiento.

Tabla 2.33 - Tasa neta de reproducción (expresada como el número promedio de progenie hembra capaz de ser producida por cada hembra de la población durante toda su vida) calculada en una población de *Daphnia magna*, como consecuencia de la exposición crónica a dos muestras provenientes del río Colorado extraídas en Octubre de 2013, analizado durante 21 días. Los resultados representan el promedio de tres réplicas por tratamiento y control.

Muestra	<i>Tasa Neta de Reproducción</i> (número promedio de progenie hembra/hembra)
Control ¹	75,8333 (± 3,92)
Desfiladero Bayo (CL 3)	75,7667 (±4,01)
Punto Unido (CL 4)	78,1333 (± 3,47)

¹ Población control, mantenida durante 21 días en las condiciones del ensayo en agua de dilución, en ausencia de muestra. Los valores entre paréntesis representan el desvío estándar para cada valor de Tasa Neta de Reproducción, luego de 21 días de exposición.

Los resultados alcanzados indican que las muestras provenientes de la Estación CL 3 (Desfiladero Bayo) y de la Estación CL 4 (Punto Unido) no resultan ejercer efecto tóxico crónico significativo respecto del control (ANOVA de un factor y test de Dunnett, p<0,05), sobre la reproducción expresada como Tasa Neta de Reproducción, de la población de *Daphnia magna* expuesta durante 21 días, en las condiciones de los ensayos.

En el ANEXO III del presente informe, con fines comparativos, se ha incluido la serie histórica que comprende los años 1999, 2000, 2001, 2002, 2003 y 2004-2005, 2006-2007, 2008, 2009, 2010, 2011 y 2012 (COIRCO 2001, 2002, 2003, 2004, 2006, 2007, 2010, 2011a, 2011b, 2012, 2013; Alcalde *et al.* 2000, 2003, 2005; Perl 2000, 2002).

2.7.5 Discusión

Los resultados obtenidos en los ensayos ecotoxicológicos llevados a cabo con muestras de agua extraídas en Desfiladero Bayo (CL 3) y Punto Unido (CL 4) pusieron de manifiesto la ausencia de efectos tóxicos crónicos sobre la supervivencia y reproducción de las poblaciones de *Daphnia magna* expuestas.

Referencias

- Alcalde, R., Perl, J.E., Andrés, F., 2000, *Evaluación de la calidad del agua del sistema río Colorado-embalse Casa de Piedra para diferentes usos,* 4tas Jornadas de Preservación de Agua, Aire y Suelo en la industria del Petróleo y del Gas, Instituto Argentino del Petróleo y del Gas, 3 al 6 de octubre de 2000, Salta.
- Alcalde, R., Perl, J.E., Andrés, F, 2003, *Calidad del ambiente acuático en el sistema del río Colorado*, 5^{tas} Jornadas de Preservación de Agua, Aire y Suelo en la Industria del Petróleo y del Gas, Instituto Argentino del Petróleo y del Gas, 4 al 7 de noviembre de 2003, Mendoza
- Alcalde, R., Perl, J.E., Andrés, F., 2005, *Evaluación de la calidad del agua en la cuenca del río Colorado (Argentina)*, XX Congreso Nacional del Agua, 9 al 14 de mayo de 2005, Mendoza
- CCME (Canadian Council of Ministers of the Environment), 2006, *Canadian Water Quality Guidelines for the Protection of Aquatic Life*, Canadian Environmental Quality Guidelines.
- CCME (Canadian Council of Ministers of the Environment), 2005, *Canadian Water Quality Guidelines for the Protection of Agricultural Uses Irrigation*, Canadian Environmental Quality Guidelines.
- CCME (Canadian Council of Ministers of the Environment), 2005, *Canadian Water Quality Guidelines for the Protection of Agricultural Uses Livestock*, Canadian Environmental Quality Guidelines.
- CCREM (Canadian Council of Resource and Environment Ministers), 1987, *Canadian Water Quality Guidelines*.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 1999, *Programa de Relevamiento y Monitoreo de Calidad de Aguas del Sistema Río Colorado-Embalse Casa de Piedra*, Informe Técnico, Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2001, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2000, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía y Minería de la Nación, Grupo Interempresario. 73 pp y Anexos
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2002, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2001, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía y Minería de la Nación, Grupo Interempresario. 73 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2003, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2002, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 97 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2004, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2003, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 127 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2006, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Años 2004-2005*, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 189 pp.

- COIRCO (Comité Interjurisdiccional del Río Colorado), 2008, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Años 2006-2007,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 189 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2010, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2008,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 266 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2011a, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2009*, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 121 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2011b, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2010,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 121 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2012, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2011,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 344 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2013, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2012,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 348 pp. y anexos en formato digital.
- Gaskin, J. E., 1993, *Quality assurance in water quality monitoring*, Ecosystem Science and Evaluation Directorate, Conservation and Protection Environment Canada, Ottawa, Ontario.
- ISO/IEC, 2005, General requirements for the competence of testing and calibration laboratories.
- OMS (Organización Mundial de la Salud), 2006, *Guías para la calidad del agua potable*, Primer apéndice a la tercera edición Volumen 1 Recomendaciones.
- Perl, J.E., 2000, *Programa Integral de Calidad de Aguas de la Cuenca del río Colorado, Argentina*, IV Seminario Taller de Cuencas Hidrológicas Patagónicas Río Gallegos.
- Perl, J.E., 2002, *Manejo Integral de la Cuenca del río Colorado Calidad de Aguas* IV Seminario Internacional de Cuencas, Ushuaia, noviembre de 2002.
- WHO (World Health Organization), 1993, *Guidelines for drinking-water quality*, Second edition, Volume 1, Recommendations, Geneva.
- WHO (World Health Organization), 1998, *Guidelines for drinking-water quality*, Second edition, Addendum to Volume 2, Health criteria and other supporting information, Geneva.

El material fotográfico empleado en la pág. 55, correspondiente a Punto Unido y a Puente Dique ha sido reproducido del informe COIRCO - Comité Interjurisdiccional del Río Colorado, "Estudio Determinación de áreas de riesgo hídrico - Cuenca del Río Colorado", Financiamiento Dirección Nacional de Preinversión (DINAPREI). Estudio1.EE.411; Préstamo 1896/OC-AR, BID. Informe Final Junio 2013.

Contenido

3.1 Introducción	113
3.2 Estaciones de muestreo	114
3.3 Metodología de muestreo	119
3.4 Metodologías analíticas	121
3.4.1 Análisis de metales y metaloides	121
3.4.1.1 Técnicas y métodos analíticos	121
3.4.1.2 Control de calidad de las operaciones de campo y laboratorio)122
3.4.2 Análisis de hidrocarburos aromáticos polinucleares y alifáticos	123
3.4.2.1 Técnica y métodos analíticos	123
3.4.2.2 Control de calidad analítica	124
3.5 Resultados	124
3.5.1 Metales y metaloides y HAPs	124
3.5.3 Valores guía	131
3.6 Discusión	132
3.7 Ensayos ecotoxicológicos con sedimentos de fondo	135
3.7.1 Ensayos con <i>Hyalella curvispina</i>	136
3.7.2 Ensayos con <i>Vallisneria spiralis</i>	137
3.7.3 Evaluación de biomarcadores sobre <i>Vallisneria spiralis</i>	139
3.7.4 Conclusiones generales	142
Referencias	144

3.1 Introducción

Dentro de los objetivos del Subprograma Calidad del Medio Acuático, se encuentra la investigación de la presencia de sustancias tóxicas en los sedimentos de fondo.

Las sustancias tóxicas investigadas, metales pesados e hidrocarburos aromáticos polinucleares (HAPs), tienen relación con la existencia de fuentes naturales y antrópicas en el área. Entre las primeras, figura la litología de la alta cuenca, representada por un intenso vulcanismo en épocas pasadas, el cual ha dado lugar a la presencia de rocas que poseen diversos metales pesados y metaloides en su composición, los cuales, a través de fenómenos de meteorización, son liberados al ambiente. Entre las segundas se cuentan las actividades productivas e industriales del petróleo y la presencia de asentamientos humanos ribereños, las cuales son potenciales generadoras de metales/metaloides y HAPs.

A través de la meteorización de las rocas o la acción de otros procesos como la precipitación química, el arrastre de suelos por escorrentía superficial o la descarga de efluentes se genera el material particulado que el agua transporta en suspensión. Según su naturaleza, dicho material particulado tiene la capacidad de adsorber sobre su superficie, a través de diversos mecanismos, sustancias que le son afines. De esta manera, pueda transportarlas hasta los sitios de sedimentación, donde pueden ser acumuladas o sufrir otros destinos como la incorporación en la biota acuática, la liberación hacia la columna de agua, etc.

Muchas de las sustancias tóxicas investigadas en el Subprograma Calidad del Medio Acuático (metales/metaloides y HAPs) tienen afinidad por el material particulado y por lo tanto pueden adsorberse a los mismos y de esta manera ser transportadas. Dicha adsorción es lábil, por lo cual estas sustancias pueden liberarse a través de la desorción provocada por diversas condiciones y constituirse en biodisponibles o actuar como fuentes de reciclado a la columna de agua, afectando los distintos usos de la misma.

Con el fin de monitorear la presencia de estas sustancias en los sedimentos de fondo, con frecuencia anual se efectúan muestreos en este compartimento, en sitios representativos de fuentes potenciales de sustancias tóxicas y en lugares de acumulación de sedimentos.

La evaluación está orientada hacia la búsqueda de niveles de concentración extremadamente bajos de estas sustancias, ya que está referida en primera instancia a la ocurrencia de posibles efectos tóxicos crónicos en la biota acuática. Ello requiere la aplicación de metodologías analíticas de alta complejidad, bajo un riguroso programa de aseguramiento de la calidad de las operaciones de campo y laboratorio.

Complementariamente, los resultados obtenidos a través de los análisis químicos son confirmados y ampliados mediante la realización de ensayos de toxicidad crónicos. Estos ensayos aportan información sobre la actividad ecotoxicológica global de los sedimentos de fondo.

3.2 Estaciones de muestreo

Las muestras de sedimentos de fondo fueron extraídas en el río Colorado, aguas abajo de Puesto Hernández y en la toma del embalse Casa de Piedra (Fig. 3.1). La estación de muestreo ubicada en la cola del embalse no pudo ser muestreada en esta oportunidad debido a que esa zona se encontraba sin agua.

Fig. 3.1 - Estaciones de monitoreo de sedimentos de fondo en el río Colorado (Desfiladero Bayo - Aguas abajo de Puesto Hernández) y en el embalse Casa de Piedra (cola y toma)

En la Tabla 3.1 figuran las estaciones de muestreo y su ubicación.

Tabla 3.1 Estaciones de monitoreo de sedimentos de fondo en el río Colorado (aguas abajo de Puesto Hernández) y en el embalse Casa de Piedra (cola y toma)

Estación de muestreo	Coordenadas geográficas
Río Colorado, aguas abajo de Puesto Hernández ⁽¹⁾	S 37° 18′ 36.6″ - O 69°03 ′ 02.4″
Embalse Casa de Piedra (cola)	
Sitio 1	S 38°12 ′ 16.76 ″ - O 67°39′ 37.79 ″
Sitio 2	S 38°12 ′ 02.32 ″ - O 67°39′ 37.99 ″
Embalse Casa de Piedra (toma)	
Sitio 1a	S 38° 12′ 32 ″ .7 - O 67°13′1 3.7 ″
Sitio 1b	S 38º12′5 1.8″ - O 67º12′34 .3″
Sitio 1c	S 38° 12′ 59.5 ″ - O 67°12′19 .4 ″
Sitio 2a	S 38° 12′1 7.7 ″ - O 67°12′5 4.7 ″
Sitio 2b	S 38º12′35.7″ - O 67º12′19.2″
Sitio 2c	S 38º12'41.8" - O 67º12'00.8"
Sitio 3a	S 38º12'00.3" - O 67º12'37.7"
Sitio 3b	S 38°12 ′ 15.4 ″ - O 67°1 2′ 02. 8″
Sitio 3c	S 38º12′ 23.1″ - O 67º11′44 .3″

Ubicada sobre la margen derecha, sobre un pequeño brazo del río Colorado, en el área de Rincón de los Sauces. Es un área con potentes manifestaciones de vulcanismo en el pasado, en la cual tiene lugar una extensa explotación hidrocarburífera. La estación de monitoreo de sedimentos de fondo se encuentra ubicada aguas abajo del cañadón en el cual descargaba el efluente la planta deshidratadora de crudo de puesto Hernández. Fue establecida para el programa de relevamiento general (1997-1999), siendo designada entonces como estación nº VI. Desde el año 2000 es operada como estación de la red de monitoreo de sedimentos de fondo.

Fig. 3.2 – (a) ubicación geográfica Área Puesto Hernández, (b) se observa punto de muestreo y zona de influencia.

Estación ubicada en la cola del embalse Casa de Piedra. En esta área se han establecido dos sitios de muestreo: SED 1 y SED 2. Esta zona fue estudiada por primera vez en el relevamiento general realizado entre 1997 y 1999, en aquel entonces denominada estación nº XXIII. Es representativa de un área de acumulación de arcillas y limos transportados por el río Colorado, después de atravesar zonas donde existen actividades potencialmente generadoras de contaminantes (metales pesados y metaloides e hidrocarburos aromáticos polinucleares).

Fig. 3.3 – (a) ubicación geográfica Área cola del embalse, (b) ubicación geográfica de los puntos de muestreo SED 1 y SED 2.

Estación ubicada a la altura de la toma del embalse Casa de Piedra. En esta área se han establecido tres transectas con tres sitios de muestreo cada una: Sed 1a, Sed 1b, Sed 1c, Sed 2a, Sed 2b, Sed 2c, Sed 3a, Sed 3b y Sed 3c. Esta estación comenzó a operarse en el año 2000 con un solo sitio de muestreo, ampliándose a tres en el año 2002 y a los 9 sitios actuales en el año 2007. Es representativa de la zona lacustre del embalse, área de sedimentación de material particulado fino con potencialidad de adsorción de contaminantes (metales/metaloides y HAPs).

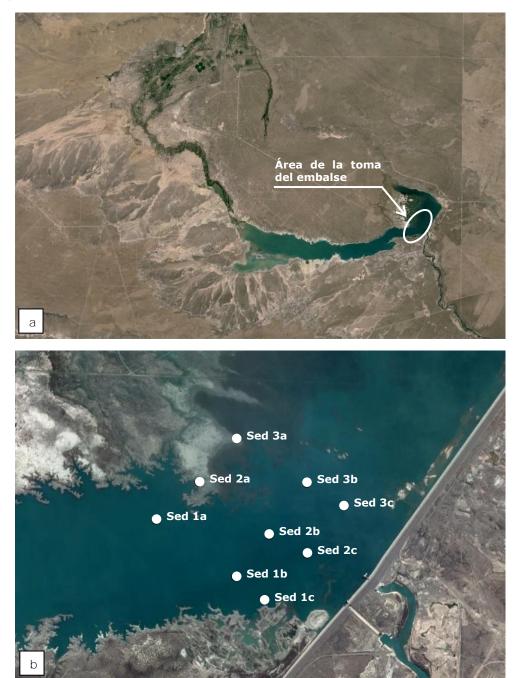


Fig. 3.4 – (a) ubicación geográfica Área toma del embalse, (b) ubicación geográfica de los puntos de muestreo.

3.3 Metodología de muestreo

La preparación de los elementos para el muestreo y la obtención de las muestras de sedimentos de fondo se llevó a cabo conforme a lo establecido en los respectivos Procedimientos Operativos Estándar (PO S001 y PO S002) del Programa de Aseguramiento de la Calidad para Operaciones de Campo del COIRCO.

En el embalse Casa de Piedra las muestras de sedimentos de fondo fueron extraídas desde una embarcación utilizándose una draga tipo *Eckman* (Fig. 3.5).

Fig. 3.5 – Muestreo de sedimentos de fondo en el embalse Casa de Piedra mediante una draga tipo *Eckman*.

Para efectuar el submuestreo de los sedimentos de fondo extraídos con la draga se emplearon elementos de vidrio previamente lavados con ácido nítrico al 5% y agua ultrapura (Tipo I ASTM) (muestras para análisis de metales/metaloides y ensayos ecotoxicológicos) y con ácido nítrico 5% y acetona grado cromatográfico (muestras para análisis de hidrocarburos). Mediante dichos elementos se submuestrearon las porciones de sedimentos que no estuvieron en contacto con la draga. Las submuestras obtenidas fueron homogeneizadas en recipientes de vidrio sometidos al procedimiento de lavado antes indicado, extrayéndose luego las porciones para enviar a los laboratorios. Se estima que los sedimentos obtenidos son representativos del estrato 0-10 cm.

Para el muestreo de sedimentos de fondo en la estación ubicada en el río Colorado aguas abajo de Puesto Hernández se utilizó un tubo de acrílico (*corer*) de 5 cm de diámetro interno y 65 cm de largo (Fig. 3.6a). En una grilla, se tomaron 20 muestras, extrayéndose de cada una de ellas sendas submuestras

de los primeros 5 cm de sedimento. Las 20 submuestras se homogeneizaron en recipientes de vidrio previamente acondicionados (Fig. 3.6b) y posteriormente se extrajeron las porciones (1 kg) para enviar a cada uno de los laboratorios.

Fig. 3.6 – (a) Muestreo de sedimentos de fondo en el río Colorado mediante un *corer* de acrílico. (b) Homogeneización de las submuestras de sedimento.

Los elementos de muestreo, homogeneización y envasado fueron previamente lavados mediante el procedimiento antes descripto.

Para el análisis de metales y metaloides y HAPs, las porciones de sedimentos fueron envasadas en recipientes de vidrio (Fig. 3.7).

Fig. 3.7 – Homogeneización y envasado de los sedimentos de fondo extraídos mediante draga en el embalse Casa de Piedra.

Las muestras de sedimentos de fondo para ensayos ecotoxicológicos fueron extraídas solamente en el embalse Casa de Piedra. Las correspondientes submuestras fueron envasadas en porciones de 2 kg en bolsas de polietileno sometidas previamente al procedimiento de lavado antes descripto (Fig. 3.8).

Fig. 3.8 – Muestras de sedimentos de fondo del embalse Casa de Piedra para ensayos ecotoxicológicos.

Las muestras fueron mantenidas en campo en conservadoras con hielo. Las correspondientes a metales y metaloides y HAPs fueron congeladas en *freezer* (-18°C) y enviadas a los laboratorios. Las muestras para ensayos ecotoxicológicos fueron mantenidas bajo refrigeración y remitidas al laboratorio en ese estado.

3.4 Metodologías analíticas

3.4.1 Análisis de metales y metaloides

Los análisis de metales y metaloides en los sedimentos de fondo fueron llevados a cabo en el laboratorio del Instituto de Tecnología Minera (INTEMIN), dependiente del Servicio Geológico Minero Argentino (SEGEMAR). Este laboratorio cuenta con un sistema de calidad basado en la Norma ISO/IEC 17025 (ISO/IEC 2005).

3.4.1.1 Técnicas y métodos analíticos

Las técnicas y métodos analíticos empleados con sus respectivos límites de cuantificación se muestran en la Tabla 3.2.

Tabla 3.2 - Técnicas y métodos analíticos empleados en el análisis de metales y

metaloides en sedimentos de fondo y sus respectivos límites de cuantificación.

Elemento	Técnica analítica	Método	Límite de cuantificación (µg/g)
Arsénico	A.A. por generación de hidruros	EPA 3051 - 7061a	1
Bario	ICP	EPA 3051 - 6010 B	1
Boro	ICP	EPA 3051 - 6010 B	5
Cadmio	ICP	EPA 3051 - 6010 B	0,5
Cinc	ICP	EPA 3051 - 6010 B	1
Cobre	ICP	EPA 3051 - 6010 B	1
Cromo	ICP	EPA 3051 - 6010 B	1
Mercurio	A.A. por vapor frío	EPA 3051- EPA 7471a	0,05
Molibdeno	ICP	EPA 3051 - 6010 B	1
Níquel	ICP	EPA 3051 - 6010 B	1
Plata	ICP	EPA 3051 - 6010 B	1
Plomo	ICP	EPA 3051 - 6010 B	1
Selenio	AA por generación de hidruros	EPA 3051 - 7741a	0,2
Vanadio	ICP	EPA 3051 - 6010 B	1

AA: espectrometría de absorción atómica – ICP: espectrometría de emisión por plasma inductivo

3.4.1.2 Control de calidad de las operaciones de campo y laboratorio

La verificación de la calidad analítica se llevó a cabo analizando, junto con las muestras de sedimentos de fondo extraídas en septiembre de 2013, un material de referencia certificado (WQB-1 - *Reference Sediment - National Water Research Institute (NWRI) - Canada*). En la Tabla 3.3 se muestran los resultados obtenidos.

Tabla 3.3 Análisis de metales recuperables totales en el material de referencia WQB-1 (*Reference Sediment*) – *National Water Research Institute (NWRI)* – *Canada* (septiembre de 2013)

Elemento	Concentración certificada (µg/g)	Concentración hallada (µg/g)	Error %
Arsénico	23,1	21	-9,1
Bario	413	412	-0,2
Boro	77,3	73	-5,6
Cadmio	1,79	1,8	0,6
Cinc	279	272	-2,5
Cobre	78,4	77	-1,8
Cromo	77,2	72	-6,7
Mercurio	1,09	1,0	-8,3
Molibdeno	1,20	1,1	-8,3
Níquel	63,1	61	-3,3
Plata	0,85	<1	-
Plomo	85,0	79	-7,1
Selenio	1,53	1,4	-8,5
Vanadio	107	103	-3,7

(1) Gaskin, J.E. 1993

3.4.2 Análisis de hidrocarburos aromáticos polinucleares

3.4.2.1 Técnica y métodos analíticos

Los análisis de hidrocarburos aromáticos polinucleares en sedimentos de fondo fueron llevados a cabo en el Laboratorio de Análisis Cromatográficos CIC de Lomas del Mirador, provincia de Buenos Aires. Este laboratorio cuenta con un sistema de calidad basado en la Norma ISO/IEC 17025 (ISO/IEC 2005)

Las determinaciones fueron realizadas mediante cromatografía en fase gaseosa con detección por espectrometría de masas.

Se extrajeron con diclorometano, por sonicación durante tres horas, cantidades pesadas de muestras (aproximadamente 30 g), previamente mezcladas con sulfato de sodio anhidro. Las fracciones de diclorometano para cada muestra se filtraron y se llevaron a sequedad a presión reducida, retomando luego en el menor volumen posible de diclorometano. Se inyectó en el cromatógrafo 1 μ L del extracto para cada ensayo (se llevaron a cabo dos ensayos distintos para cada muestra, uno cualitativo de identificación y otro cuantitativo). Una segunda extracción de las muestras permitió determinar que los HAPs remanentes estaban en concentraciones muy bajas. Sobre fracciones de muestras independientes se determinó el contenido de humedad por secado en estufa.

En la Tabla 3.4 figuran los HAPs analizados y los límites de cuantificación alcanzados por el laboratorio.

Tabla 3.4 - HAPs analizados y sus respectivos límites de detección y cuantificación

HAPs	Límite de detección (µg/g)	Límite de cuantificación (µg/g)
Naftaleno	0,0005	0,002
Acenafteno	0,0005	0,002
Acenaftileno	0,0005	0,002
Fluoreno	0,0005	0,002
Fenantreno	0,0005	0,002
Antraceno	0,0005	0,002
Metilnaftaleno	0,0005	0,006
Dimetilnaftaleno	0,0005	0,006
Metilfenantreno	0,0005	0,006
Dimetilfenantreno	0,0005	0,006
Fluoranteno	0,0005	0,002
Pireno	0,0005	0,002
Benzo[b]fluoranteno	0,0005	0,002
Benzo[k]fluoranteno	0,0005	0,002
Criseno	0,0005	0,002
Benzoantraceno	0,0005	0,002
Benzo[a]pireno	0,0005	0,002
Dibenzo[a,h]antraceno	0,0005	0,002
Benzo[g,h,i]perileno	0,0005	0,002
Indeno[c,d]pireno	0,0005	0,002

3.4.2.2 Control de calidad analítica

Con el fin de evaluar la calidad analítica se llevó a cabo el análisis de una muestra de sedimentos fortificada con un estándar de HAPs, el cual contenía 2 µg/mL de los siguientes hidrocarburos: Naftaleno, Acenaftileno, Acenafteno, Fluoreno, Fenantreno, Antraceno, Fluoranteno, Pireno, Benzo[a]antraceno, Criseno, Benzo[b]fluoranteno, Benzo[k]fluoranteno, Benzo[a]pireno, Dibenzo[a,h]antraceno, Benzo[ghi]perileno, Indeno[1,2,3-cd]pireno. En la Tabla 3.5 se muestran los porcentajes de recuperación obtenidos.

Tabla 3.5. Porcentajes de recuperación de HAPs en una muestra de sedimentos de fondo del embalse Casa de Piedra fortificada con un estándar.

HAPs	% Recuperación ⁽¹⁾
Naftaleno	74,0
Acenaftileno	78,0
Acenafteno	86,0
Fluoreno	91,0
Fenantreno	92,0
Antraceno	92,0
Fluoranteno	90,0
Pireno	93,0
Benzo[a]antraceno + Benzo[k]antraceno	92,0
Criseno	83,0
Benzo[b]fluoranteno	83,0
Benzo[k]fluoranteno	84,0
Benzo[a]pireno	91,0
Indeno[1,2,3-cd]pireno	94,0
Dibenzo[a,h]antraceno	91,0
Benzo[ghi]perileno	91,0

⁽¹⁾ Gaskin, J.E., 1993.

3.5 Resultados

3.5.1 Metales y metaloides y HAPs

En las Tablas 3.6 a 3.11 se muestran los resultados del análisis de metales y metaloides y HAPs en muestras de sedimentos de fondo extraídas en el río Colorado (aguas abajo de Puesto Hernández) y en el embalse Casa de Piedra (área de la toma del embalse) correspondientes al año 2013. En los Anexos IV y V se ha incluido el registro completo de resultados obtenidos en el período 2000 - 2012 (COIRCO 2000, 2002, 2004, 2006, 2008, 2010, 2011a, 2011b, 2012, 2013).

RÍO COLORADO - ÁREA DE LA EX-DESCARGA DE LA PLANTA DESHIDRATADORA DE CRUDO DE PUESTO HERNÁNDEZ

Metales y metaloides

Tabla 3.6 - Metales y metaloides (µg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en el río Colorado, aguas abajo de Puesto Hernández (Año 2013)

Metal/metaloide (μg/g)				
Arsénico	5,1			
Bario	342			
Boro	55			
Cadmio	<0,5			
Cinc	53			
Cobre	34			
Cromo	30			
Mercurio	<0,05			
Molibdeno	<1			
Níquel	21			
Plata	<1			
Plomo	16			
Selenio	<0,2			
Vanadio	134			

<u>HAPs</u>

Tabla 3.7 - HAPs en sedimentos de fondo ($\mu g/g$ peso seco) en el río Colorado, aguas abajo de Puesto Hernández (Año 2013)

HAPs (µg/g)	
Naftaleno	<ld< td=""></ld<>
Acenafteno	<ld< td=""></ld<>
Acenaftileno	<ld< td=""></ld<>
Fluoreno	<ld< td=""></ld<>
Fenantreno antraceno	<ld< td=""></ld<>
Metilnaftaleno	<ld< td=""></ld<>
Dimetilnaftaleno	<ld< td=""></ld<>
Metilfenantreno	<ld< td=""></ld<>
Dimetilfenantreno	<ld< td=""></ld<>
Fluoranteno	<ld< td=""></ld<>
Pireno	<ld< td=""></ld<>
Benzo[b+k]fluoranteno	<ld< td=""></ld<>
Criseno	<ld< td=""></ld<>
Benzo[a]antraceno	<ld< td=""></ld<>
Benzo[a]pireno	<ld< td=""></ld<>
Dibenzo[a,h]antraceno	<ld< td=""></ld<>
Benzo[ghi]perileno	<ld< td=""></ld<>
Indeno[1,2,3-cd]pireno	<ld< td=""></ld<>

Metales y metaloides

Tabla 3.8 – Metales y metaloides (μ g/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en la cola del embalse Casa de Piedra (Año 2013)

Metal/metaloide (μg/g)					
Arsénico	N.M.				
Bario	N.M.				
Boro	N.M.				
Cadmio	N.M.				
Cinc	N.M.				
Cobre	N.M.				
Cromo	N.M.				
Mercurio	N.M.				
Molibdeno	N.M.				
Níquel	N.M.				
Plata	N.M.				
Plomo	N.M.				
Selenio	N.M.				
Vanadio	N.M.				

N.M.: no muestreado

<u>HAPs</u>

Tabla 3.9 - HAPs en sedimentos de fondo (µg/g peso seco) extraídos en la cola del embalse Casa de Piedra (Año 2013)

HAPs (μg/g)					
Naftaleno	N.M.				
Acenafteno	N.M.				
Acenaftileno	N.M.				
Fluoreno	N.M.				
Fenantreno/Antraceno	N.M.				
Metilnaftaleno	N.M.				
Dimetilnaftaleno	N.M.				
Metilfenantreno	N.M.				
Dimetilfenantreno	N.M.				
Fluoranteno	N.M.				
Pireno	N.M.				
Benzo[b+k]fluoranteno	N.M.				
Criseno	N.M.				
Benzo[a]antraceno	N.M.				
Benzo[a]pireno	N.M.				
Dibenzo[a,h]antraceno	N.M.				
Benzo[ghi]perileno	N.M.				
Indeno[1,2,3-cd]pireno	N.M.				

N.M.: no muestreado

Metales y metaloides

Tabla 3.10 - Metales y metaloides (µg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo en la toma del embalse Casa de Piedra (Año 2013)

Metal/metaloide		Transectas							
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3с
Arsénico	6,3	6,1	10	4,6	9,7	3,8	4,7	4,9	5,8
Bario	205	184	305	171	292	149	163	158	209
Boro	91	79	114	86	77	52	75	76	55
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	< 0.5	<0,5	<0,5	<0,5
Cinc	25	11	43	40	95	44	15	27	18
Cobre	42	38	61	51	54	36	46	43	32
Cromo	31	28	44	33	38	23	30	32	26
Mercurio	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,10
Molibdeno	<1	< 1	<1	<1	<1	<1	< 1	<1	<1
Níquel	8,8	8,4	22	17	21	14	14	14	12
Plata	<1	< 1	<1	<1	<1	<1	< 1	<1	<1
Plomo	28	23	30	22	21	11	20	21	19
Selenio	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Vanadio	141	127	230	175	187	123	154	147	134

<u>HAPs</u>

Tabla 3.11 - HAPs en sedimentos de fondo (μ g/g peso seco) extraídos en transectas en la toma del embalse Casa de Piedra (septiembre de 2013).

HAPs	Transectas								
(µg/g)	1a	1b	1c	2a	2b	2c	3а	3b	3с
Naftaleno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>0,0402</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>0,0402</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>0,0402</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>0,0402</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	0,0402	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Acenafteno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Acenaftileno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluoreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fenantreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Antraceno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Metilnaftaleno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dimetilnaftaleno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Metilfenantreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dimetilfenantreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluoranteno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Pireno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[b]fluoranteno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[k]fluoranteno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Criseno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[a]antraceno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[a]pireno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dibenzo[a,h]antraceno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[ghi]perileno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Indeno[1,2,3-cd]pireno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

Metales/metaloides

Con respecto al año 2012, se observaron ligeros aumentos en las concentraciones de boro, cobre, cromo, níquel, plomo y vanadio en la fracción recuperable total de los sedimentos de fondo extraídos en el río Colorado, aguas abajo de la ex descarga de Puesto Hernández (Tabla 3.6 y Tabla IV.1 del Anexo IV). En tanto que los niveles de arsénico, bario y selenio registraron una moderada disminución. No hubo detección de cadmio, mercurio, molibdeno y plata.

En la toma del embalse (Tabla 3.10 y Tabla IV.4 del Anexo IV), en todos los sitios muestreados en el presente ciclo, se registraron concentraciones de arsénico inferiores con respecto al año 2012. Mientras que los niveles de plomo, a excepción del sitio 2c, fueron superiores. Los registros de cinc y níquel mostraron en general una tendencia a la disminución con respecto al año anterior, en tanto que para las concentraciones de boro, cobre, cromo y vanadio fue de aumento. Los valores hallados para boro no mostraron una tendencia definida, con incrementos y disminuciones con respecto al año 2012.

En el presente ciclo, tampoco hubo detección de cadmio, molibdeno, plata y selenio en los sitios muestreados en la toma del embalse, no así con respecto al mercurio, del cual en esta oportunidad se registró una única detección de mercurio en el sitio 3c.

<u>HAPs</u>

No hubo detección de HAPs en las muestras de sedimentos de fondo extraídas en el río Colorado, aguas abajo de Puesto Hernández. En la toma del embalse Casa de Piedra, se detectó únicamente naftaleno en la transecta 2b (Tabla 3.11). Como ya fue señalado, no pudo efectuarse el muestreo en la cola del embalse debido a la falta de agua.

3.5.3 Valores guía

Los resultados obtenidos en el análisis de metales y metaloides y HAPs fueron evaluados tomando como referencia los valores guía para la protección de la vida acuática publicados en *Canadian Environmental Guidelines* (CCME 2014) los cuales figuran en las Tablas 3.12 y 3.13.

Tabla 3.12 - Valores guía y niveles de efecto probable de metales y metaloides en sedimentos de fondo de agua dulce para la protección de la vida acuática⁽¹⁾

Metal/metaloide	Valor guía (µg/g, peso seco)	Nivel de Efecto Probable (μg/g, peso seco)	
Arsénico	5,9	17,0	
Cadmio	0,6	3,5	
Cinc	123,0	315,0	
Cobre	35,7	197,0	
Cromo	37,3	90,0	
Mercurio	0,170	0,486	
Plomo	35,0	91,3	

⁽¹⁾ Canadian Environmental Quality Guidelines, CCME, 2014

Tabla 3.13 - Valores guía de HAPs para la calidad de los sedimentos de aguas dulces

para la protección de la vida acuática (1)

HAPs	Valor guía (µg/g)	Nivel de Efecto Probable (µg/g)
Acenafteno	0,00671	0,0889
Acenaftileno	0,00587	0,128
Antraceno	0,0469	0,245
Benzo[a]antraceno	0,0317	0,385
Benzo[a]pireno	0,0319	0,782
Criseno	0,0571	0,862
Dibenzo[a,h]antraceno	0,00622	0,135
Fenantreno	0,0419	0,515
Fluoranteno	0,111	2,355
Fluoreno	0,0212	O,144
2-Metilnaftaleno	0,0202	0,201
Naftaleno	0,0346	0,391
Pireno	0,0530	0,875

⁽¹⁾ Canadian Environmental Quality Guidelines, CCME, 2014

3.6 Discusión

En el presente ciclo se observó que, en los casos en que hubo detección, las concentraciones de los diferentes metales y metaloides investigados en la fracción recuperable total en muestras de sedimentos de fondo extraídas en el río Colorado aguas abajo de Puesto Hernández fueron inferiores a los respectivos valores guía para la protección de la vida acuática (Fig. 3.9). En la toma del embalse Casa de Piedra, el mencionado valor guía para algunos elementos fue superado ligeramente en algunos sitios, pero siempre las concentraciones halladas fueron muy inferiores a los respectivos niveles de efecto probable (Fig. 3.10)

En relación con los HAPs, el nivel hallado en la única detección que tuvo lugar resultó muy inferior al correspondiente valor guía para la protección de la vida acuática (Tabla 3.13).

Los ensayos ecotoxicológicos llevados a cabo con sedimentos de fondo (Sección 3.7), aportan información complementaria sobre la significación de las concentraciones de metales y metaloides que superan los respectivos valores guía para protección de la vida acuática. También, permiten evaluar un posible efecto adverso debido a la presencia de otros metales/metaloides y HAPs para los cuales aún no han sido derivados valores guía, aunque no individualizarlos si estuvieran presentes.

En los Anexos III, IV y V se muestran los resultados de las campañas anteriores, y que se utilizan como base de datos para las Figuras 3.9 y 3.10.

Plomo (μg/g)

Nivel de de de clo probable: 91,3 μg/g

60

Valor guía: 35,0 μg/g

20

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Fig. 3.9 (a, b c, d, e, f, g) – Variación de la concentración de arsénico, cadmio, cinc, cobre, cromo, mercurio y plomo en la fracción recuperable total de los sedimentos de fondo extraídos en la estación ubicada aguas abajo de Puesto Hernández en relación con los respectivos valores guía y niveles de efecto probable para la protección de la vida acuática (Período 2004 -2013).

Fig. 3.10 – Variación de la concentración de arsénico, cobre, cromo y mercurio en la fracción recuperable total de los sedimentos de fondo extraídos en transectas en el área en la toma del embalse Casa de Piedra, en relación con los respectivos valores guía y niveles de efecto probable para la protección de la vida acuática (Período 2008-2013).

3.7 Ensayos ecotoxicológicos con sedimentos de fondo

(Tomado de Saenz, María Elena; Alberdi, José Luis; Tortorelli, María del Carmen; Di Marzio, Walter D. - Programa de Investigación en Ecotoxicología (PRIET) - Departamento de Ciencias Básicas, Universidad Nacional de Luján, Programa Integral de Calidad de Agua del Sistema del Río Colorado - Período 2013, Subprograma Calidad del Medio Acuático - Informe de Resultados, octubre de 2013).

Los ensayos ecotoxicológicos con sedimentos de fondo fueron llevados a cabo en el Laboratorio del Programa de Investigación en Ecotoxicología (PRIET) – Departamento de Ciencias Básicas de la Universidad Nacional de Luján, Luján, provincia de Buenos Aires.

Para los ensayos fueron empleados dos organismos: *Hyalella curvispina*, crustáceo anfípodo bentónico y *Vallisneria spiralis*, macrófita acuática enraizada. En este último organismo fueron evaluados además los biomarcadores guaiacol peroxidasa y catalasa.

Las muestras fueron obtenidas en la estación aguas abajo de Puesto Hernández y en la toma del embalse Casa de Piedra (Tabla 3.14). En dichas muestras se efectuó también el análisis de metales/metaloides y HAPs. Debido al bajo nivel de agua en el embalse en esta oportunidad no fue posible extraer muestras de sedimentos en el área de la cola.

Tabla 3.14 - Estaciones de muestreo de sedimentos para ensayos ecotxicológicos

Estación de muestreo	Coordenadas geográficas
Río Colorado, aguas abajo de Puesto Hernández ⁽¹⁾	S 37º18′36.6″ - O 69º03′02.4″
Embalse Casa de Piedra (cola)	
Sitio 1	S 3 8º12′16.76″ - O 67º39′37.79″
Sitio 2	S 38º12′02.32″ - O 67º39′37.99″
Embalse Casa de Piedra (toma)	
Sitio 1a	S 38º12′32″.7 - O 67º13′13.7″
Sitio 2c	S 38º12'41.8" - O 67º12'00.8"
Sitio 3a	S 38º12'00.3" - O 67º12'37.7"

3.7.1 Ensayos con Hyalella curvispina

Los ensayos con *Hyalella curvispina* se efectuaron con muestras de sedimentos de fondo extraídas aguas abajo de Puesto Hernández y en el embalse Casa de Piedra (toma). La duración del diseño de ensayo seleccionado fue de 10 días. El protocolo utilizado corresponde al recomendado por la *U.S. Environmental Protection* Agency (*U.S. EPA* 1996, 2000) *y Di Marzio* (Di Marzio *et al.* 1999).

Se evaluaron las muestras de sedimentos de fondo entero extraídas en las estaciones antes mencionadas, exponiendo a las mismas una población de *Hyalella curvispina* y registrándose como variables del ensayo la mortalidad y el crecimiento.

Al cabo de los 10 días de exposición, los distintos medios de ensayo control y tratados fueron filtrados a través de una malla de 400 μ m, a fin de separar y contar los ejemplares sobrevivientes en cada uno de ellos. Del mismo modo, se separaron los sobrevivientes y se midió la longitud total de estos ejemplares, en los grupos controles y tratados, a efectos de analizar las diferencias en el crecimiento potencial consecuencia de la exposición a los sedimentos evaluados.

En la Tabla 3.15 figuran los resultados alcanzados respecto de la mortalidad y crecimiento de los ejemplares controles y expuestos, durante 10 días a las muestras de sedimentos evaluados.

Tabla 3.15. Porcentajes de mortalidad y valores de la longitud total media observados como resultado de la exposición durante 10 días de una población de *Hyalella curvispina* a muestras de sedimento entero (100%) obtenidas aguas abajo de Puesto Hernández y en las estaciones Toma (1a, 3a y 2c) en el mes de Septiembre de 2013.

Muestra	Sobrevivencia (%)	S	C.V.	Crecimiento (µm)	S	C.V.
Control ¹	95	1,00	10,53	1050	108,1	10,29
Puesto Hernández	87,5	0,96	10,94	1175	144,34	12,28
Cola del embalse			No mue	streado		
Toma del embalse Casa de Piedra (1a)	95	0,58	6,08	1012,5	59,65	5,89
Toma del embalse Casa de Piedra (3a)	87,5	0,50	5,71	997,5	143,85	14,42
Toma del embalse Casa de Piedra (2c)	92,5	0,96	10,35	1012,5	179,70	17,75

¹ Población control mantenida durante 10 días en las condiciones del ensayo en sedimento estándar y agua de dilución, en ausencia de muestra. * Diferencias significativas (ANOVA- Dunnett p < 0,05). s: desvío estándar, c.v.: coeficiente de variación en porcentaje.

Los resultados presentados en la Tabla 3.15 indican que no se han registrado efectos ecotóxicos significativos de los sedimentos analizados respecto del crecimiento y sobrevivencia sobre individuos de *Hyalella curvispina* en ninguna de las muestras.

3.7.2 Ensayos con Vallisneria spiralis

Los ensayos de ecotoxicidad con sedimentos de fondo, fueron realizados utilizando como organismo de prueba a una población de *Vallisneria spiralis*, de acuerdo a las recomendaciones indicadas en *Biernack*i et al., 1997, *Laboratory assay of sediment phytotoxicity using the macrophyte Vallisneria americana, Environ. Toxicol. And Chem.* 16 (3): 472-478).

Se incubaron ejemplares jóvenes obtenidos a partir de cultivos pertenecientes al Laboratorio del Programa de Investigación en Ecotoxicología, en las muestras de sedimentos de fondo extraídas en el río Colorado y en el embalse Casa de Piedra en el mes de septiembre de 2013.

La variable observada en los ensayos fue la generación de biomasa, mediante el conteo de hojas y la determinación del contenido de clorofila \boldsymbol{a} .

Se llevaron a cabo estimaciones de la biomasa inicial de los ejemplares utilizados, mediante el conteo del número de hojas de cada planta.

Las concentraciones utilizadas para el ensayo fueron del 0% (control) y 100% para cada una de las muestras de las estaciones Puesto Hernández y toma del embalse. Los ensayos de toxicidad se llevaron a cabo por duplicado en acuarios de 50 cm de altura por 60 cm de largo por 30 cm de ancho, utilizándose un acuario por muestra.

Las incubaciones se realizaron a 22 °C con un fotoperiodo de 12 h luz/12 h oscuridad, bajo una intensidad lumínica de 1500 lux. Los recipientes se mantuvieron con aireación a lo largo del ensayo.

Al cabo de 10 días de incubación, se determinó el número de hojas nuevas en ejemplares expuestos y controles, como una estimación de la generación de biomasa a lo largo de la exposición, calculándose la Tasa de Crecimiento Relativo (TCR). Por otra parte, a la finalización del ensayo, se realizaron estimaciones del contenido de clorofila **a** de los ejemplares tratados y controles. Estas estimaciones fueron realizadas mediante la técnica espectrofotométrica con lectura de extractos de clorofila en acetona *in vitro*. Se utilizó un espectrómetro *Shimadzu*.

Los resultados obtenidos en los ensayos se muestran en la Tabla 3.16

Tabla 3.16. Tasa de Crecimiento Relativo (TCR) y contenido de clorofila **a** de **Vallisneria spiralis** al cabo de 10 días de exposición a sedimento control y a muestras de 100% de sedimento provenientes de las estaciones Puesto Hernández y Toma del embalse Casa de Piedra (septiembre de 2013). Los resultados para cada muestra representan el promedio y el desvío estándar.

Muestra	Tasa de crecimiento relativo (TCR)	Contenido de clorofila a (mg/g, peso fresco)	
Control ¹	Control ¹ 8,8 (±1,4)		
Puesto Hernández	6,8 (±0,8)	279,2 (±3,5)	
Cola del embalse	No muestreado		
Toma del embalse 1a 7,8 (±1,6)		285,2 (±6,6)	
Toma del embalse 2c 7,8 (±1,2)		281,4 (±8,1)	
Toma del embalse 3a	7,4 (±1,5)	287,2 (±8,1)	

Población control mantenida durante 10 días en las condiciones indicadas para el ensayo en sedimento estándar y agua de dilución, en ausencia de muestra. Los valores entre paréntesis representan el desvío estándar para cada valor de tasa de crecimiento y contenido de clorofila **a**.

Los valores reportados en la Tabla 3.16 indican que no existen diferencias significativas entre la tasa de crecimiento relativo del control y las plantas incubadas en los sedimentos provenientes de las estaciones de muestreo toma Embalse 1a, toma Embalse 2c, toma de Embalse 3a y Puesto Hernández (ANOVA test de Dunnett, $p \le 0.05$).

No se registraron diferencias significativas entre los valores de Clorofila \boldsymbol{a} de las plantas incubadas en los sedimentos de todas las estaciones de muestreo y los controles.

3.7.3 Evaluación de biomarcadores sobre Vallisneria spiralis

Adicionalmente, se efectuó la evaluación de biomarcadores en Vallisneria spiralis.

Fueron determinadas las actividades guaiacol peroxidasa y catalasas en los ejemplares control y expuestos al sedimento entero de las estaciones Puesto Hernández, toma de embalse 1a, toma de embalse 2c, toma de embalse 3a utilizadas en los ensayos de ecotoxicidad.

Para la determinación de la actividad guaicol peroxidasa se empleó el método desarrollado por Egert y Tevini (Egert M and M Tevini, 2002, *Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum), Environ. and Exp. Botany* 48: 43-49). En presencia de peróxido de hidrógeno, la enzima *guaiacol peroxidasa (GPX)* cataliza la transformación del guaiacol a tetraguaiacol, producto de color marrón. La oxidación del guaiacol se monitorea mediante el incremento de la absorbancia a 470 nm.

La actividad catalasas fue determinada mediante el método desarrollado por Johansson y Borg (Johansson, L.H. and L.A. Borg, 1988, *A spectrophotometric method for determination of catalase activity in small tissue simples, Anal Biochem 174: 331-336*).

Los resultados obtenidos se muestran en la Tabla 3.17.

Tabla 3.17 - Actividad guaicol peroxidasa (milimoles de guaiacol catalizado por minuto de reacción por mg de proteína) luego de la exposición durante 10 días de *Vallisneria spiralis* a muestras de sedimento entero proveniente de las diferentes estaciones (septiembre de 2013).

Muestra	Actividad guaicol peroxidasa (mM Guaiacol/min/mg proteína)	
Control ¹	0,75 (±0,10)	
Puesto Hernández	1,2 (±0,12)*	
Cola del embalse	No muestreado	
Toma del embalse 1a	0,71 (±0,08)	
Toma del embalse 2c	0,69 (±0,13)	
Toma del embalse 3a	0,99 (±0,03)*	

¹ Población control mantenida durante 10 días en las condiciones del ensayo en sedimento estándar y agua de dilución, en ausencia de muestra. ² Los valores entre paréntesis representan el desvío estándar para cada valor de actividad enzimática. *diferencia significativa (ANOVA- Dunnett p < 0,05).

Los resultados registrados en la Tabla 3.17 permiten observar la ausencia de diferencias significativas (ANOVA de un factor con test de Dunnett, p < 0,05) entre los valores de la actividad catalasas de los ejemplares expuestos al sedimento entero de las estaciones toma de embalse 1a y toma de embalse 2c de los controles no expuestos. Los sedimentos provenientes de los sitios de muestreo toma de embalse 3a y Puesto Hernández provocaron un aumento significativo de la actividad de esta enzima en las hojas de las plantas respecto a la actividad de las plantas controles. El aumento registrado fue de 32 y 60 % respectivamente.

En la Tabla 3.18 se muestran los resultados obtenidos en la evaluación de la actividad catalasas.

Tabla 3.18 Actividad catalasas (milimoles de peróxido de hidrógeno catalizado por minuto de reacción por mg de proteína) luego de la exposición durante 10 días de una población de *Vallisneria spiralis* a muestras de sedimento entero provenientes de las diferentes estaciones (septiembre de 2013).

Muestra	Actividad catalasas (mM H ₂ O ₂ /min/mg proteína)
Control ¹	114,4 (±12,4)
Puesto Hernández	162 (±13,3)*
Cola del embalse	No muestreado
Toma del embalse 1a	98,1 (±14,1)
Toma del embalse 2c	101,5 (±7,7)
Toma del embalse 3a	171 (±9,1)*

¹ Población control mantenida durante 10 días en las condiciones del ensayo en sedimento estándar y agua de dilución, en ausencia de muestra. ² Los valores entre paréntesis representan el desvío estándar para cada valor de actividad enzimática. *diferencia significativa (ANOVA- Dunnett p < 0,05).

Los resultados registrados en la Tabla 3.18 permiten observar la ausencia de diferencias significativas (ANOVA de un factor con test de Dunnett, p < 0,05) entre los valores de la actividad Catalasas de los ejemplares expuestos al sedimento entero del sitio toma de embalse 1a, toma de embalse 2c respecto de los controles en sedimento estándar.

Sin embargo se observó un significativo aumento de la actividad de esta enzima en las plantas incubadas en los sedimentos provenientes de los sitios de muestreo toma de embalse 3a y Puesto Hernández, con valores de 51 y 42 % respectivamente, respecto de los valores de las plantas controles.

Las plantas incubadas en los sedimentos provenientes de los sitios toma del embalse 1a y toma del embalse 2c presentaron un crecimiento y actividades enzimáticas para ambas enzimas estudiadas no diferente de las plantas controles.

Por lo tanto estas muestras no afectaron los parámetros estudiados. Los sedimentos provenientes del sitio toma de embalse 3a no afectaron el crecimiento de las plantas expuestas, pero alteraron de manera significativa la actividad de ambas enzimas, registrándose un aumento del 32 % respecto al control para la guaiacol peroxidada y de un 51 % para la enzima catalasa. Es de destacar que la muestra de este mismo sitio de muestreo también provocó

inducción de la actividad de ambas enzimas en la campaña anterior. Los sedimentos de Puesto Hernández no produjeron un aumento significativo de la tasa de crecimiento de *V. spiralis*. Las plantas expuestas presentaron un aumento de las actividades de los biomarcadores evaluados, encontrándose valores significativamente mayores para la enzima catalasa de 42% y de 60% en el caso de la guaiacol peroxidada. También en este sitio de muestreo se registró un aumento de la actividad de ambas enzimas en la campaña anterior.

Los sedimentos provenientes de los sitios toma del embalse 3a, Puesto Hernández provocaron un aumento significativo de las enzimas relacionas al estrés oxidativo celular en los ejemplares de *V. spiralis*, ratificando el comportamiento ya detectado en la campaña anterior.

Se aconseja incluir la determinación del nivel de peroxidación lipídica en próximos estudios a fin de complementar y definir los efectos observados y conocer la capacidad de los mecanismos de acción antioxidantes para combatir el estrés oxidativo celular observado en *V. spiralis*.

Con fines comparativos, en el Anexo VI se ha incluido el registro de resultados obtenidos en períodos de estudios anteriores (COIRCO 2001, 2002, 2003, 2006, 2007, 2010, 2011a y 2011b, 2012, 2013).

3.7.4 Conclusiones generales

De los resultados expuestos, es posible establecer que:

- En las condiciones de los ensayos, no se han registrado efectos ecotóxicos significativos, en relación a los controles, sobre el crecimiento (medido como longitud total media) y la sobrevivencia de las poblaciones del crustáceo bentónico dulceacuícola *Hyalella curvispina*, como resultado de su exposición durante 10 días, a las muestras del sedimento entero extraídas de las estaciones Puesto Hernández, toma del embalse 3a, 2c y 1a (ANOVA Dunnett p < 0.05).</p>
- En las condiciones de los ensayos, no se han registrado efectos ecotóxicos crónicos significativos, en relación a los controles, sobre el contenido de clorofila **a**, considerados como estimadores de la biomasa, de la población de la planta macrófita acuática enraizada **Vallisneria spiralis**, como resultado de su exposición durante 10 días, a las muestras del sedimento entero extraídas de las estaciones Puesto Hernández y toma del embalse 1a, 3a, y 2c, (ANOVA-Dunnett p < 0.05).
- En las condiciones de los ensayos, no se han registrado efectos ecotóxicos crónicos significativos, en relación a los controles, sobre la generación de hojas nuevas de la población de la planta macrófita acuática enraizada *Vallisneria spiralis*, como resultado de su exposición durante 10 días, a las muestras del sedimento entero extraídas de las estaciones Puesto Hernández y toma del embalse 1a, 3a, y 2a (ANOVA-Dunnett p < 0.05).

- En las condiciones de los ensayos, no se han registrado efectos significativos sobre la actividad enzimática guaiacol peroxidasa y catalasas, respecto de los controles, de la población de la planta macrófita acuática enraizada *Vallisneria spiralis*, como resultado de su exposición durante 10 días, a las muestras del sedimento entero extraídas de las estaciones toma del embalse 1a y 2c (ANOVA-Dunnett p < 0.05).
- En las condiciones de los ensayos, se han registrado efectos significativos sobre la actividad enzimática guaiacol peroxidasa y catalasas, respecto de los controles, de la población de la planta macrófita acuática enraizada *Vallisneria spiralis*, como resultado de su exposición durante 10 días, a las muestras del sedimento entero extraídas de las estaciones Puesto Hernández y toma del embalse 3a (ANOVA Dunnett p < 0.05).

Referencias

- CCME, 2002, *Canadian Sediment Quality Guidelines for the Protection of Aquatic Life*, Environmental Quality Guidelines.
- Gaskin, J. E., 1993, *Quality assurance in water quality monitoring*, Ecosystem Science and Evaluation Directorate, Conservation and Protection Environment Canada, Ottawa, Ontario.
- ISO (International Organization for Standardization)/IEC (International Electrotechnical Commission), 2005, *General requirements for the competence of testing and calibration laboratories.*
- COIRCO, 2000, *Programa de Relevamiento y Monitoreo de Calidad de Aguas del Sistema del Río Colorado-Embalse Casa de Piedra*, Comisión Técnica Fiscalizadora, Secretaría de Energía de la Nación, Grupo Interempresario, Informe Técnico del Comité Interjurisdiccional del río Colorado (COIRCO), 118 pp.
- COIRCO, 2001, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2000, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía y Minería de la Nación, Grupo Interempresario.
- COIRCO, 2002, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2001, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario.
- COIRCO, 2003, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2002, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario.
- COIRCO, 2006, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Años 2004-2005, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario.
- COIRCO, 2008, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Años 2006-2007, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2010, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2008,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 266 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2011a, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2009,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 121 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2011b, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2010,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 121 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2012, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2011*, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 341 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2013, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2012,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 348 pp. y anexos en formato digital.
- Di Marzio, WD; Sáenz ME; Alberdi, JL and Tortorelli, MC, 1999, Assessment of the Toxicityof Stabilized Sludges using Hyalella curvispina (Amphipod) Bioassays. Bulletin of Environmental Contamination and Toxicology, Vol. 63 (5): 654-659.
- US EPA, 1996, Ecological Effects Test Guidelines, OPPTS 850.1735, Whole Sediment Toxicity Invertebrates, Freshwater, Office of Prevention, Pesticides and Toxic Substances, 7101, EPA 712-C-96-354.
- U.S. EPA, 2000, Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. Duluth, Mn, EPA 600/R-99/064.

Contenido

4.1 Introducción	149
4.2 Estaciones de monitoreo	149
4.3 Metodología de muestreo	151
4.4 Metodologías analíticas	155
4.4.1 Análisis de metales y metaloides	155
4.4.1.1 Técnicas y métodos analíticos	155
4.4.2 Análisis de hidrocarburos aromáticos polinucleares	156
4.4.2.1 Técnicas y métodos analíticos	156
4.4.2.2 Calidad analítica	157
4.5 Resultados	158
4.6 Límites para el consumo humano	163
4.7 Discusión	164
Referencias	165

4.1 Introducción

Anualmente se efectúan capturas de peces con el fin de verificar la posible presencia de niveles significativos de sustancias tóxicas acumuladas en la parte comestible de las diferentes especies presentes en el río Colorado y en el embalse Casa de Piedra. Dichas sustancias (metales/metaloides y HAPs), potencialmente originadas en fuentes naturales y antrópicas, podrían determinar la existencia de un riesgo para la salud humana a través de la ingesta de pescado.

En el presente informe se evalúan los resultados obtenidos en el análisis de muestras de tejido muscular provenientes de las capturas de diferentes especies de peces llevadas a cabo en el año 2013 en áreas del río Colorado y en embalse Casa de Piedra.

4.2 Estaciones de monitoreo

Los muestreos de peces se efectuaron en sitios seleccionados en el río Colorado en el área Puesto Hernández y en el embalse Casa de Piedra (Tabla 4.1, Fig 4.1). El primer sitio es representativo de una zona de explotación petrolera y de fuentes naturales de sustancias tóxicas (Fig. 4.2) y el segundo, un lugar de potencial acumulación de contaminantes (Fig. 4.3).

Tabla 4.1 – Ubicación de los sitios de muestreo de peces

Sitio de muestreo	Coordenadas
Río Colorado	S 37º18'36.6"
(Puesto Hernández)	O 69º03'02.4"
Embalse Casa de Piedra	S 38º09'39.8"
(villa)	O 67º10'16.3"

Fig. 4.1 – Ubicación de los sitios de captura de peces en el sistema del río Colorado.

Fig. 4.2 – Zona de captura de peces aguas abajo de la ex descarga de Puesto Hernández. Representa un área con manifestaciones de una potente actividad volcánica en el pasado que se conjuga con una intensa explotación petrolera actual.

Fig. 4.3 – El área de captura de peces en el embalse Casa de Piedra se encuentra en una zona en el cual tiene lugar la sedimentación del material particulado fino, constituyendo por lo tanto un lugar de potencial acumulación de contaminantes ligados a dicho material.

4.3 Metodología de muestreo

(Sauval, R. H., Muestreo de Peces en Río Colorado – Desfiladero Bayo y Embalse Casa de Piedra, Período Septiembre 2013)

La preparación de los elementos para el muestreo de peces y la obtención de las muestras de tejido muscular fue llevada a cabo conforme a lo establecido en los respectivos Procedimientos Operativos Estándar (PO P001 y PO P002) del Programa de Aseguramiento de la Calidad para Operaciones de Campo del COIRCO.

Se emplearon tres diferentes métodos de pesca a fin de incrementar la posibilidad de captura: redes agalleras, red de voleo (*casting net*) y pesca eléctrica.

Redes agalleras

La unidad de muestreo con redes fue una batería de redes agalleras (*Fukui Fishing Net Co. Ltd.*), compuesta por siete paños armados de distinto tamaño de malla. Este método de pesca se aplicó en el embalse Casa de Piedra (Fig. 4.4).

En el embalse Casa de Piedra se realizaron pescas en un sitio en el área adyacente a la presa del embalse, en cercanías de la Villa Casa de Piedra, sobre margen izquierda. En ese sitio se caló una batería completa al atardecer, dejándola durante una noche.

Fig. 4.4 – Pesca con red agallera en el embalse Casa de Piedra.

Red de voleo (casting net) y pesca eléctrica

Estas artes de pesca se emplearon en el río Colorado, aguas abajo de Puesto Hernández, en sectores de aguas someras.

La pesca eléctrica, dio mejores resultados que en la campaña del año 2012, pese que la visibilidad en el agua era muy baja. Esta técnica requiere un agua que permita la visibilidad de los peces atraídos hacia el cátodo. Se capturaron dos perquitas espinudas, una perca bocona y un pejerrey, todos individuos de pequeña talla.

Con la red de voleo (Fig. 4.5) se obtuvo un bagre otuno (Fig. 4.6) el cual pese a su tamaño fue procesado y enviado a los laboratorios.

Fig. 4.5 - Pesca en el río Colorado empleando red de voleo.

En la Tabla 4.2 se detallan las especies obtenidas en cada estación en la campaña de septiembre de 2013 y el número de ejemplares a los cuales se les extrajo una porción de músculo dorsal para el análisis de metales y metaloides y HAPs. En la Fig. 4.6 se ilustran las especies capturadas.

Tabla 4.2 – Especies de peces capturadas en la campaña de muestreo de septiembre de 2013 y número de ejemplares a los cuales se les extrajo una porción de músculo dorsal.

Estación	Nombre común	Nombre científico
Río Colorado (Puesto Hernández) ^(*)	Perca bocona (1) Perquita espinuda (2) Pejerrey bonaerense (1) Bagre otuno (1)	Percichthys colhuapiensis Percichthys altispinis Odontesthes bonatiensis Olivaichthys viedmensis
Embalse Casa de Piedra (villa)	Pejerrey bonaerense (10) Carpa (10)	Odontesthes bonariensis Ciprynus Carpio

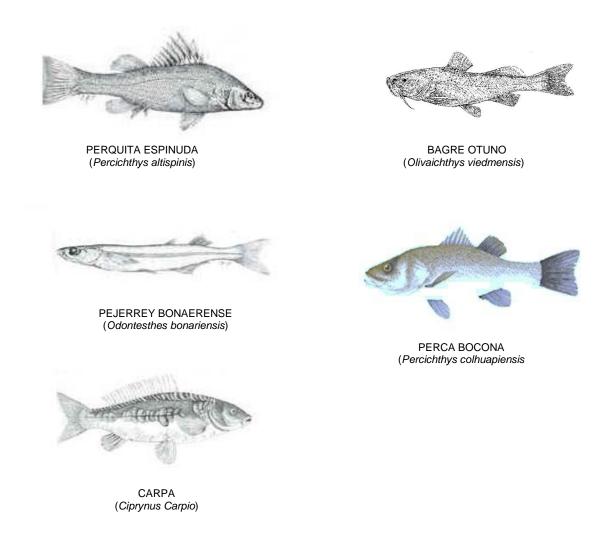


Fig. 4.6 - Especies de peces capturadas en el río Colorado (Puesto Hernández) y en el embalse Casa de Piedra (villa) (perquita espinuda, bagre otuno, pejerrey bonaerense, y carpa: imágenes tomadas de "Especies ictícolas de aguas continentales patagónicas" - Secretaría de Ambiente y Desarrollo Sustentable de la Nación; perca bocona: imagen tomada de "Especies de valor deportivo de Neuquén" - Subsecretaría de Turismo - Gobierno de Neuquén)

En la presente campaña se capturaron 69 peces en total (5 en el río Colorado y 64 en el embalse Casa de Piedra).

Una vez obtenidos los ejemplares fueron medidos (largo total) (Fig. 4.7) y pesados (peso fresco total). Inmediatamente después de obtener el peso se realizó la disección de cada ejemplar, extrayendo dos porciones de los paquetes musculares dorsales, mediante la utilización de un cuchillo cerámico (Fig. 4.8) a fin de evitar la posible contaminación por metales en la disección.

Fig. 4.7 – Medición de la talla de un ejemplar de pejerrey bonaerense

Fig. 4.8 – Disección de un ejemplar de pejerrey bonaerense y extracción de una porción del músculo dorsal a un ejemplar de pejerrey mediante un cuchillo de hoja cerámica para el análisis de metales/metaloides y HAPs.

Las porciones de músculo dorsal de cada especie íctica fueron envasadas en frascos de vidrio para el análisis de metales y metaloides y HAPs (Fig. 4.9). Todos los elementos de envasado utilizado fueron acondicionados previamente según lo indicado en el Procedimiento Operativo Estándar PO P001.

Fig. 4.9 – Ejemplares de peces capturados a los cuales se les extrajo una porción de músculo dorsal para el análisis de metales/metaloides y HAPs.

En el muestreo de peces llevado a cabo en la presente campaña, en algunos casos, a pesar de los esfuerzos de pesca, no pudieron lograrse capturas que alcanzaran el número mínimo de ejemplares recomendados para este tipo de estudios (*Ministry of Environment and Energy* 2011). Este hecho ya se ha producido con anterioridad en otros ciclos de estudio, en particular en el río Colorado (COIRCO 2001, 2002, 2003, 2004, 2006, 2008, 2009, 2010 y 2011,2012 y 2013).

4.4 Metodologías analíticas

4.4.1 Análisis de metales y metaloides

Los análisis de metales y metaloides en músculo de peces de fondo fueron llevados a cabo en el laboratorio del Instituto de Tecnología Minera (INTEMIN), dependiente del Servicio Geológico Minero Argentino (SEGEMAR). Este laboratorio cuenta con un sistema de calidad basado en la Norma ISO/IEC 17025 (ISO/IEC 2005).

4.4.1.1 Técnicas y métodos analíticos

Las técnicas y métodos preparatorio (EPA 200.3) y analíticos empleados con sus respectivos límites de cuantificación se muestran en la Tabla 4.3.

Tabla 4.3 – Técnicas y métodos analíticos y sus respectivos límites de cuantificación empleados en el análisis de metales y metaloides en músculo de peces

Técnica analítica	Método	Límite de cuantificación (µg/g)
A.A. por generación de hidruros	EPA 200.3/7062	0,2
A.A. por generación de hidruros	EPA 200.3 - 7061 A	0,2
ICP	EPA 200.3 - 6010 B	1,0
A: A por atomización electrotérmica	EPA 200.3 - 7131 A	0,1
ICP	EPA 200.3 - 6010 B	1,0
ICP	EPA 200.3 - 6010 B	0,2
ICP	EPA 200.3 - 6010 B	0,2
ICP	EPA 200.3 - 6010 B	1,0
A.A. por vapor frío	EPA 200.3 - 7471 A	0,04
ICP	EPA 200.3 - 6010 B	0,2
ICP	EPA 200.3 - 6010 B	0,2
ICP	EPA 200.3 - 6010 B	0,3
ICP	EPA 200.3 - 6010 B	0,15
AA por generación de hidruros	EPA 200.3 - 7741 A	0,2
	A.A. por generación de hidruros A.A. por generación de hidruros ICP A: A por atomización electrotérmica ICP	A.A. por generación de hidruros A.A. por generación de hidruros ICP EPA 200.3 - 7061 A EPA 200.3 - 6010 B EPA 200.3 - 7131 A EPA 200.3 - 6010 B EPA 200.3 - 6010 B EPA 200.3 - 6010 B ICP EPA 200.3 - 6010 B EPA 200.3 - 6010 B EPA 200.3 - 6010 B ICP EPA 200.3 - 6010 B ICP

A.A.: espectrometría de absorción atómica – ICP: espectrometría de emisión atómica por plasma inductivo. EPA: Environmental Protection Agency (Estados Unidos)

4.4.2 Análisis de hidrocarburos aromáticos polinucleares

Los análisis de HAPs en músculo de peces fueron llevados a cabo mediante cromatografía en fase gaseosa con detección por espectrometría de masas en el Laboratorio de Análisis Cromatográficos CIC de Lomas del Mirador, provincia de Buenos Aires. Este laboratorio cuenta con un sistema de calidad basado en la Norma ISO/IEC 17025 (ISO/IEC 2005).

4.4.2.1 Técnicas y métodos analíticos

Las muestras de músculo de los diferentes ejemplares fueron homogeneizadas, tomándose de cada una porciones representativas. Se extrajeron con cloroformo por sonicación durante tres horas.

Las fracciones de cloroformo para cada muestra se pasaron por una columna de alúmina con el fin de eliminar la mayor parte de la materia grasa disuelta. Luego, las columnas se enjuagaron con porciones frescas de cloroformo y las fases orgánicas se evaporaron a presión reducida para eliminar el solvente, retomando luego en 1 mL de cloroformo. Este proceso se repitió efectuando una segunda extracción de cada porción de muestra. Se inyectó en el cromatógrafo 1 µL para cada ensayo (dos distintos para cada muestra: cualitativo de identificación y cuantitativo para HAPs). Los cromatogramas de las segundas extracciones no mostraron señales significativas de HAPs.

4.4.2.2 Calidad analítica

La verificación de la calidad analítica en la determinación de metales/metaloides se llevó a cabo analizando, junto con las muestras de músculo dorsal de las diferentes especies de peces, un material de referencia certificado (DORM-2 - *National Research Council – NRC - Canada*). En la Tabla 4.4 se muestran los resultados obtenidos.

Tabla 4.4 - Análisis de metales y metaloides en el material de referencia certificado DORM-2 - *National Research Council (NRC) - Canada*

Elemento	Concentración certificada (µg/g) ⁽¹⁾	Concentración hallada (µg/g)	Error ⁽²⁾ %
Antimonio	no disponible	<0,2	=
Arsénico	18,0±1,1 ⁽¹⁾	14±2	-22,2
Bario	no disponible	2,0±0,3	-
Cadmio	$0.043 \pm 0.008^{(1)}$	<0,1	-
Cinc	25,6±2,3	24,4±1,4	-4,7
Cobre	2,34±0,16	$2,4\pm0,3$	-2,6
Cromo	34,7±5,5	32,0±2,0	-7,8
Hierro	142±10	132±7	-7,0
Mercurio	4,64±0,26	4,36±0,11	-6,0
Molibdeno	no disponible	<0,2	-
Níquel	19,4±3,1	17,8±1,5	-8,2
Plata	0,041±0,013	<0,3	-
Plomo	0,065±0,007	<0,15	-
Selenio	1,40±0,09	1,4±0,2	0,0

⁽¹⁾ Las incertidumbres corresponden a un nivel de confianza del 95%.

En la determinación de HAPs, la calidad analítica fue evaluada mediante el análisis de una muestra (14,885 g) de músculo dorsal de carpa capturada en el embalse Casa de Piedra, fortificada con un estándar de este tipo de sustancias, el cual contenía 100 μ g/mL de naftaleno, acenaftileno, acenafteno, fluoreno, fenantreno, antraceno, fluoranteno, pireno, benzo[a]antraceno, criseno, benzo [b] y [k] fluoranteno, benzo[a]pireno, dibenzo[a,h]antraceno, benzo[g,h,i]perileno e indeno[c,d]pireno.

En la Tabla 4.5 se muestran los porcentajes de recuperación obtenidos para cada HAP.

⁽²⁾ Gaskin, J.E. 1993.

Tabla 4.5 – Porcentajes de recuperación de HAPs en músculo de carpa capturada en el embalse Casa de Piedra (cola) en septiembre de 2013, fortificada con un estándar.

HAP	% Recuperación ⁽¹⁾
Naftaleno	79
Acenaftileno	90
Acenafteno	92
Fluoreno	95
Antraceno	97
Fenantreno	93
Fluoranteno	94
Pireno	96
Benzo[byk]antraceno	93
Criseno	96
Benzo[b+k]fluoranteno	90
Benzo[a]pireno	97
Dibenzo[a,h]antraceno	97
Benzo[g,h,i]perileno	95
Indeno[c,d]pireno	95

⁽¹⁾ *Gaskin, J.E.*, 1993

4.5 Resultados

En las Tablas 4.6, 4.7, 4.8 y 4.9 se muestran los resultados obtenidos en el análisis de HAPs en músculo dorsal de las especies capturadas y muestreadas en el río Colorado y en el embalse Casa de Piedra.

En el ANEXO VIII del presente informe, con fines comparativos, se ha incluido, la serie histórica que comprende los años 2000, 2001, 2002, 2003, 2004-2005, 2006-2007, 2008, 2009, 2010, 2011 y 2012 (COIRCO 2001, 2002, 2003, 2004, 2006, 2008, 2010, 2011a, 2011b, 2012 y 2013, Alcalde *et al.* 2000, 2003, 2005; Perl 2000, 2002).

Tabla 4.6 - Concentraciones de metales y metaloides (µg/g, peso húmedo) halladas en el músculo dorsal de diferentes especies de peces capturadas en el río Colorado (área Puesto Hernández) en septiembre de 2013.

Metal/metaloide (μg/g)	Perquita espinuda (2)	Perca bocona (1)	Pejerrey bonaerense (1)	Bagre otuno (1)
Arsénico	<0,2	<0,2	<0,2	<0,2
Antimonio	<0,2	<0,2	<0,2	<0,2
Bario	<1	<1	< 1	<1
Cadmio	< 0, 1	< 0, 1	<0,1	< 0, 1
Cinc	$2,9\pm0,2$	$3,1\pm0,4$	5,0±0,5	5,8±0,4
Cobre	<0,2	<0,2	<0,2	$0,5\pm0,1$
Cromo	<0,2	<0,2	<0,2	<0,2
Hierro	$4,2\pm0,3$	1,5±0,2	5,5±0,3	1,5±0,2
Mercurio	0.06 ± 0.01	0.07 ± 0.01	<0,04	0.05 ± 0.01
Molibdeno	<0,2	<0,2	<0,2	<0,2
Níquel	1,5±0,2	1,1±0,2	1,0±0,2	1,2±0,2
Plata	<0,3	<0,3	<0,3	<0,3
Plomo	$0,6\pm0,1$	1,0±0,1	$0,5\pm0,1$	$3,3\pm0,6$
Selenio	$0,6 \pm 0,1$	0.6 ± 0.1	$0,7\pm 0,1$	$0,5\pm0,1$

Tabla 4.7 - Concentraciones de HAPs ($\mu g/g$, peso húmedo) halladas en el músculo dorsal de diferentes especies de peces capturadas en el río Colorado (área Puesto Hernández) en septiembre de 2013.

HAPs (µg/g)	Perquita espinuda (2)	Perca bocona (1)	Pejerrey Bonaerense (1)	Bagre otuno (1)
Naftaleno	0,0419	0,0625	0,1498	0,1168
Acenaftileno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Acenafteno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluoreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fenantreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Antraceno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Metilnaftaleno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dimetilnaftaleno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Metilfenantreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dimetilfenantreno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluoranteno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Pireno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[b+k]fluoranteno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Criseno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[a]antraceno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[a]pireno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dibenzo[a,h]antraceno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[g,h,i]perileno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Indeno[c,d]pireno	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

LD: Límite de detección (0,001 μg/g) - Límite de cuantificación: 0,006 μg/g

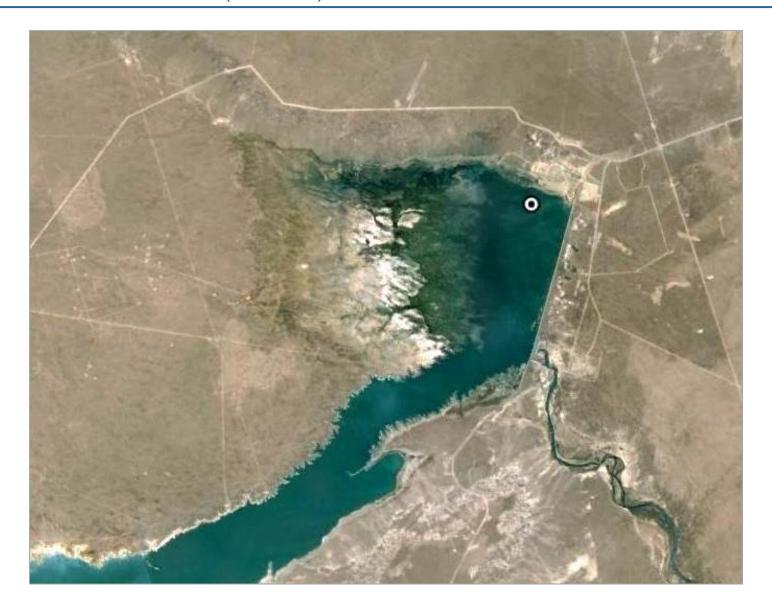


Tabla 4.8 – Concentraciones de metales y metaloides (µg/g, peso húmedo) halladas en el músculo dorsal de ejemplares de diferentes especies de peces capturadas en el embalse Casa de Piedra (villa) septiembre de 2013.

Metal/metaloide	Pejerrey bonaerense	Carpa
(µg/g)	(10)	(10)
Arsénico	<0,2	<0,2
Antimonio	<0,2	<0,2
Bario	<1	< 1
Cadmio	<1	<1
Cinc	$3,0\pm0,4$	3.8 ± 0.4
Cobre	3,2	<0,2
Cromo	<0,2	<0,2
Hierro	<1	<1
Mercurio	<0.04	<0,04
Molibdeno	<0,2	<0,2
Níquel	1,0±0,2	$0,9\pm0,2$
Plata	<0,3	<0,3
Plomo	1,8±0,2	0.8 ± 0.1
Selenio	0,8±0,1	1,8±0,2

Tabla 4.9 -Concentraciones de HAPs (μ g/g, peso húmedo) halladas en el músculo dorsal de diferentes especies de peces capturadas en el embalse Casa de Piedra (villa) en septiembre de 2013.

HAPs (µg/g)	Pejerrey bonaerense (10)	Carpa (10)
Naftaleno	0,0221	0,0664
Acenaftileno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Acenafteno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluoreno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fenantreno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Antraceno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Metilnaftalenos	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dimetilnaftalenos	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Metilfenantrenos	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dimetilfenantrenos	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Fluoranteno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Pireno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[b]fluoranteno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[k]fluoranteno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[a]antraceno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Criseno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[a]pireno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Dibenzo[a,h]antraceno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Benzo[g,h,i]perileno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>
Indeno[c,d]pireno	<ld< td=""><td><ld< td=""></ld<></td></ld<>	<ld< td=""></ld<>

LD: Límite de detección (0,001 µg/g) - Límite de cuantificación: 0,003 µg/g

En los ejemplares capturados en el río Colorado, aguas abajo de puesto Hernández (Tabla 4.6), no hubo detección de arsénico, antimonio, bario, cadmio, cromo, molibdeno y plata. Se detectó cinc, hierro, níquel, plomo, y selenio en las cuatro especies capturadas y mercurio en perquita espinuda, perca bocona y bagre otuno. La única detección de cobre se registró en esta última especie.

En el embalse Casa de Piedra, en el área cercana a la villa (Tabla 4.8) se detectó únicamente cinc, níquel, plomo y selenio en las dos especies capturadas, en tanto que cobre se halló únicamente en pejerrey bonaerense.

En relación con los HAPs, en el río Colorado (área Puesto Hernández), se detectó solamente naftaleno en las cuatro especies investigadas (Tabla 4.7). Igual situación se registró en el embalse Casa de Piedra (Tabla 4.9).

4.6 Límites para el consumo humano

Los resultados obtenidos en el análisis de metales y metaloides fueron evaluados tomando como referencia los límites máximos de tolerancia para contaminantes inorgánicos para productos de la pesca (Res. ex-SENASA Nº 533 del 10/05/94), los cuales se muestran en la Tabla 4.10 y los límites para el consumo de pescado basados en el riesgo de la US EPA (US EPA 2000) para los elementos que fueron detectados.

Tabla 4.10 – Límites máximos de tolerancia para contaminantes inorgánicos en peces y productos de la pesca (SENASA)

Metal/metaloide	Límite (µg/g)
Antimonio	20
Arsénico	1
Bario	500
Boro	100
Cadmio	5
Cinc	100
Cobre	10
Cromo	-
Hierro	500
Mercurio	0,5
Molibdeno	-
Níquel	150
Plata	1
Plomo	20
Selenio	0,3

Para la evaluación de los resultados obtenidos en el análisis de HAPs se tomaron como referencia los límites para el consumo de pescado basados en el riesgo de la US EPA (US EPA 2000).

4.7 Discusión

Los metales/metaloides detectados en el músculo dorsal de las especies capturadas en el río Colorado aguas abajo de Puesto Hernández, en casi todos los casos resultaron muy inferiores a los respectivos límites para el consumo establecidos por SENASA (SENASA 1994). La excepción la constituyó el selenio, el cual se detectó en las cuatro especies analizadas en concentraciones que superaron el límite de SENASA.

No obstante, como frecuentemente ocurre en esta zona, el escaso número de ejemplares capturados fue muy escaso, no permitiendo extraer conclusiones acerca de la significación de los niveles hallados de las citadas sustancias.

La detección de metales en el embalse Casa de Piedra, en el músculo dorsal de los ejemplares de las dos especies capturadas tuvo lugar en concentraciones inferiores a los respectivos límites para el consumo humano. Al igual que en el período de estudio anterior, solamente el contenido de selenio en carpa y en pejerrey superó ligeramente dichos límites. No obstante, la concentración hallada, de acuerdo a los límites para el consumo basados en el riesgo de US EPA (US EPA 2000), no indica la necesidad de recomendar restricciones al consumo de pescado.

Tanto en el río Colorado como en el embalse Casa de Piedra, el único HAP detectado fue naftaleno, lo cual ocurrió en todas las especies analizadas. Este es un miembro del grupo que por su naturaleza y su concentración en un nivel muy bajo no representa un riesgo para la salud humana, no requiriéndose por lo tanto recomendar restricciones al consumo de pescado.

Referencias

- Alcalde, R., Perl, J.E., Andrés, F., 2000, *Evaluación de la calidad del agua del sistema río Colorado-embalse Casa de Piedra para diferentes usos,* 4tas Jornadas de Preservación de Agua, Aire y Suelo en la industria del Petróleo y del Gas, Instituto Argentino del Petróleo y del Gas, 3 al 6 de octubre de 2000, Salta.
- Alcalde, R., Perl, J.E., Andrés, F, 2003, *Calidad del ambiente acuático en el sistema del río Colorado,* 5^{tas} Jornadas de Preservación de Agua, Aire y Suelo en la Industria del Petróleo y del Gas, Instituto Argentino del Petróleo y del Gas, 4 al 7 de noviembre de 2003, Mendoza.
- Alcalde, R., Perl, J.E., Andrés, F., 2005, *Evaluación de la calidad del agua en la cuenca del río Colorado (Argentina)*, XX Congreso Nacional del Agua, 9 al 14 de mayo de 2005, Mendoza.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2001, *Programa de Relevamiento y Monitoreo de Calidad de Aguas del Sistema del Río Colorado- Embalse Casa de Piedra-Año 2000*, Comisión Técnica Fiscalizadora, Secretaría de Energía de la Nación, Grupo Interempresario, Informe Técnico del Comité Interjurisdiccional del río Colorado (COIRCO), 73 pp. y Anexos.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2002, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2001, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía y Minería de la Nación, Grupo Interempresario. 73 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2003, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2002, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 97 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2004, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2003, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 127 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2006, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Años 2004-2005, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 189 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2008, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Años 2006-2007, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 257 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2010, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático*, Año 2008, Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 266 pp.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2011a, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2009,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 121 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2011b, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2010,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 121 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2012, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2011,* Informe Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 341 pp. y anexos en formato digital.
- COIRCO (Comité Interjurisdiccional del Río Colorado), 2013, *Programa Integral de Calidad de Aguas del Río Colorado Calidad del Medio Acuático, Año 2012*, Informe

- Técnico; Comité Interjurisdiccional del Río Colorado, Secretaría de Energía de la Nación, Grupo Interempresario. 348 pp. y anexos
- Gaskin, J. E., 1993, *Quality assurance in water quality monitoring*, Ecosystem Science and Evaluation Directorate, Conservation and Protection Environment Canada, Ottawa, Ontario.
- ISO/IEC, 2005, General requirements for the competence of testing and calibration laboratories.
- Ministry of Environment and Energy, 2011, *Guide to eating Ontario sport fish*, 2011-2012, Twenty-sixth Edition, Revised. Ontario, Canada.
- Perl, J.E., 2000, *Programa Integral de Calidad de Aguas de la Cuenca del río Colorado, Argentina*, IV Seminario Taller de Cuencas Hidrológicas Patagónicas Río Gallegos.
- Perl, J.E., 2002, *Manejo Integral de la Cuenca del río Colorado Calidad de Aguas* IV Seminario Internacional de Cuencas, Ushuaia, noviembre de 2002.
- US EPA (United States Environmental Protection Agency), 2000, *Guidance for assessing chemical contaminant data for use in fish advisories Volume 2: Risk Assessment and fish consumption limits. Third edition -* 823_B-00-008 –Washington D.C.

Conclusiones

De los resultados obtenidos en la ejecución del Subprograma Calidad del Medio Acuático en el período de estudio 2013, se extraen las siguientes conclusiones:

• Calidad del agua

A partir del monitoreo de metales/metaloides y HAPs y la realización de ensayos ecotoxicológicos en la columna de agua en las estaciones establecidas al efecto, se comprueba que el agua mantiene su aptitud para ser usada como fuente de agua potable, en irrigación, ganadería y como medio para el desarrollo de la vida acuática.

El estudio realizado durante el año 2013 reúne dos particularidades que merecen ser destacadas al momento de arribar a las conclusiones, ellas son la existencia de dos incidentes de la actividad petrolera que alcanzaron el río Colorado y la continuidad de la crisis hídrica.

Con relación a los incidentes de la actividad petrolera que impactaron en el río Colorado el 22 de enero y 30 de marzo, en Puesto Hernández, podemos destacar que los mismos obligaron el corte de riego en las áreas productivas aguas abajo del área del impacto, hubo detección de hidrocarburos en Puente Dique Punto Unido y Catriel a través de muestreos durante la contingencia, y que una vez superada la misma, y ejecutadas las campañas programadas del presente estudio (especialmente aquellas campañas que fueron llevadas a cabo inmediatamente después de los incidentes, caso del 4 de febrero y 8 de abril) no revelaron la presencia de hidrocarburos (HAPs) como así tampoco niveles inusuales de metales/metaloides, en las estaciones aguas abajo del lugar del impacto, es decir, Desfiladero Bayo (CL3), Puente Dique Punto Unido (CL4) y Pasarela Medanito (CL5). Por lo tanto, se concluye que los mencionados incidentes una vez superada la contingencia no alteraron la calidad del agua para ninguno de los usos a que es sometida

Complementariamente a los objetivos que persigue el Subprograma Calidad del Medio Acuático, es oportuno hacer referencia a la crisis hídrica que viene atravesando la Cuenca del río Colorado desde el invierno de 2010, y su impacto en el incremento de la salinidad. Este es un fenómeno natural del cual se tiene conocimiento con los primeros estudios sistemáticos que dieron origen al Acuerdo del Colorado.

El incremento de la salinidad, tal como puede visualizarse en el Anexo IX del presente informe, puede ser percibido por distintos usuarios, tanto en el río Grande, Barrancas como en el Colorado (tramo regulado y no regulado), ya sea en el consumo de agua potable por el desmejoramiento de su sabor, por los efectos del aumento de la dureza ("cortado" del jabón, producción de incrustaciones en sistemas domiciliarios de agua caliente y utensilios de cocina) o bien en las áreas de riego por la aparición de depósitos de sales. Esta situación obedece a causas naturales y no tiene relación con el resto de las sustancias analizadas en este programa de estudio.

Calidad de los sedimentos de fondo

La investigación de metales/metaloides y HAPs en sedimentos de fondo en el río Colorado y en el embalse Casa de Piedra, puso de manifiesto que los niveles detectados de estas sustancias no representaban un riesgo para la vida acuática.

Los análisis de las muestras de sedimentos de fondo extraídas en septiembre de 2013, aguas abajo de Puesto Hernández, en el brazo del río afectado por el derrame, no detectaron la presencia de hidrocarburos (HAPs) y mostraron niveles de metales/metaloides que en todos los casos fueron inferiores a los respectivos valores guía para la protección de la vida acuática.

Los ensayos ecotoxicológicos crónicos llevados a cabo con los dos organismos de prueba empleados corroboraron estos resultados.

• Sustancias tóxicas en músculo de peces

El análisis de metales/metaloides e hidrocarburos aromáticos polinucleares (HAPs) en las partes comestibles de las especies de peces capturadas en el río Colorado (Puesto Hernández) y en el embalse Casa de Piedra, no indicaron la necesidad de recomendar restricciones al consumo de pescado. En Puesto Hernández, debido al escaso número de ejemplares capturados, no es posible extraer una conclusión definitiva.

Recomendaciones

Continuar con:

- El monitoreo de metales/metaloides e hidrocarburos en columna de agua en las estaciones establecidas al efecto con el fin de lograr una evaluación permanente de la calidad del agua en el sistema del río Colorado.
- La realización de los ensayos de ecotoxicidad crónica con agua del río Colorado como complemento del análisis químico en los sitios evaluados en el presente ciclo.
- El monitoreo de metales/metaloides y HAPs en sedimentos de fondo en las estaciones establecidas para ese fin en el río Colorado y en el embalse Casa de Piedra con el fin obtener una evaluación continua en el tiempo.
- La realización de ensayos ecotoxicológicos con la mencionada matriz, con el fin de mantener un seguimiento permanente y observar la evolución de los resultados variables obtenidos en el presente ciclo en la evaluación de biomarcadores en el río Colorado y en el embalse Casa de Piedra.
- El monitoreo de sustancias tóxicas en músculo de peces, a fin de contar con información actualizada sobre la variación en el tiempo de las concentraciones de metales/metaloides e hidrocarburos aromáticos polinucleares. Para estos últimos se debe procurar alcanzar límites de cuantificación más bajos que los alcanzados hasta el presente.

Tabla I.1. Estación: CL 0 Descripción: río Barrancas altura puente Ruta Nacional Nº 40

Latitud: S 36° 49' 02.3" Longitud: O 69° 52' 16.4"

Año	Metal/metaloide (μg/L)											
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio		
2000												
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
2001												
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-	-		
2002												
	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD		
18/03	<5	<1	5	8	<1	<1	<10	<5	<5	<2		
06/05	<5	<1	2	<2	<1	<1	<10	<5	<5	8		
24/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2		
12/08	<5 -	<1	<2	<2	<1	<1	<10	<5	<5	3		
07/10	<5 -	<1	23	5	<1	<1	<10	<5 -	<5 -	<2		
25/11	<5	<1	25	10	<1	<1	<10	<5	<5	<2		
2003												
00/04	MD -	MD	MD	MD	MD	MD	MD	MD	MD	MD		
28/04	<5	<1	10	<2	<1	<1	<10	<5	6	<2		
09/06	<5 -	<1	7	3	<1	<1	<10	<5	6	<2		
11/08	<5 -	<1	16	<2	<1	<1	<10	<5 	<5	<2		
22/09	<5	<1	18	<2	<1	<1	<10	<5	<5	<2		
17/11 MD: margen de	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2		

MD: margen derecha

Tabla I.1. (continuación)

Tabla I.T. (CO	Turidadiori)	Metal/metaloide (µg/L)											
Año					Wetal/meta	loide (µg/L)							
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio			
2004													
05/07	<5	<1	9±1	<2	<1	<1	<10	<5	<5	<2			
16/08	<5	<1	12±1	<2	<1	<1	<10	<5	<5	<2			
13/09	<5	<1	8±1	<2	<1	<1	<10	5±1	<5	<2			
11/10	<5	<1	21±2	<2	<1	<1	<10	<5	<5	<2			
15/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
13/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
2005													
17/01	7±1	<1	58±4	8±1	<1	<1	<10	7±1	19±3	<2			
14/02	<5	<1	22±3	<2	<1	<1	<10	<5	9±1	<2			
14/03	<5	<1	6±1	<2	<1	<1	<10	<5	<5	<2			
11/04	<5	<1	12±2	2±1	<1	<1	<10	<5	<5	<2			
02/05	<5	<1	80±5	2±1	<1	<1	<10	10±2	<5	<2			
13/06	<5	<1	3±1	<2	<1	<1	<10	<5	<5	<2			
2006													
09/01	<5	<1	98±9	15±1	<1	<1	<10	<5	<5	<2			
20/02	9±1	<1	96±9	8±1	<1	<1	<10	6±1	36±2	<2			
13/03	<5	<1	7±1	2±1	<1	<1	<10	<5	<5	<2			
17/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
08/05	<5	<1	3±0,5	<2	<1	<1	<10	7±1	<5	<2			
12/06	<5	<1	5±0,6	<2	<1	<1	<10	10±1	<5	<2			
10/07	<5	<1	6±0,7	<2	<1	<1	<10	6±0,6	<5	<2			
07/08	<5	<1	17±2	<2	<1	<1	<10	<5	<5	<2			
11/09	<5	<1	3±1	<2	<1	<1	<10	<5	<5	<2			
09/10	<5	<1	15±2	<2	<1	<1	<10	<5	<5	<2			
13/11	<5	<1	13±1	6±1	<1	<1	<10	<5	<5	<23			
11/12	<5	<1	10±1	8±1	<1	<1	<10	<5	<5	<2			

Tabla I.1. (continuación)

Año		Metal/metaloide (μg/L)											
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio			
2007													
08/01	<5	<1	18±2	6±1	<1	<1	<10	<5	<5	<2			
12/02	8±1	<1	50±5	3±1	<1	<1	<10	<5	30±2	<2			
12/03	<5	<1	9±1	2±1	<1	<1	<10	<5	<5	<2			
09/04	<5	<1	8±1	5±1	<1	<1	<10	<5	<5	<2			
07/05	<5	<1	6±1	<2	<12	<1	<10	<5	<5	<2			
11/06	<5	<1	5±	<2	<1	<1	<10	<5	<5	<2			
09/07	<5	<1	6±1	<2	<1	<1	<10	<5	<5	<2			
06/08	<5	<1	10±1	<2	<1	<1	<10	<5	<5	<2			
10/09	<5	<1	10±1	<2	<1	<1	<10	<5	<5	<2			
15/10	<5	<1	12±1	<2	<1	<1	<10	<5	<5	<2			
12/11	<5	<1	23±3	<2	<1	<1	<10	<5	<5	<2			
10/12	<5	<1	26±3	<2	<1	<1	<10	<5	<5	<2			
2008													
07/01	<5	1	87±9	14±2	1±0,3	<1	<10	9±1	41±4	4±1			
11/02	<5	<1	31±3	4±1	<1	<1	<10	<5	9±1	<2			
10/03	<5	<1	34±3	<2	<1	<1	<10	<5	<5	<2			
14/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
12/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
09/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
07/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
04/08	<5	<1	4±1	<2	<1	<1	<10	<5	<5	<2			
08/09	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
30/09	<5	<1	5±1	3±1	<1	<1	<10	<5	<5	<2			
10/11	<5	<1	3±1	12±1	<1	<1	<10	7±1	<5	<2			
08/12	<5	<1	89±6	13±1	2,4±0,5	<1	10±1	13±1	13±1	<2			

Tabla I.1. (continuación)

Año		Metal/metaloide (μg/L)											
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio			
2009													
05/01	12±1	2,0±2	71±6	12±1	1,5±0,3	<1	<10	10±1	44±2	<2			
02/02	<5	<1	11±2	<2	<1	<1	<10	<5	<5	<2			
09/03	<5	<1	41±2	3±1	2±1	<1	<10	<5	9±1	<2			
15/04	<5	<1	3±1	<2	<1	<1	<10	<5	<5	<2			
04/05	<5	<1	4±1	<2	<1	<1	<10	<5	9±1	<2			
02/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
06/07	<5	<1	9±1	6±1	<1	<1	<10	<5	<5	<2			
03/08	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
31/08	<5	<1	6±1	3±1	<1	<1	<10	<5	<5	<2			
29/09	<5	<1	2±1	<2	<1	<1	<10	<5	<5	<2			
02/11	<5	<1	10±1	9±1	3±1	<1	<10	9±1	<5	<2			
14/12	<5	<1	6±1	4±1	4±1	<1	<10	<5	<5	<2			
2010													
11/01	<5	<1	18±2	3±1	<1	<1	<10	12±1	<5	<2			
08/02	<5	<1	28±3	<2	<1	<1	<10	<5	<5	<2			
08/03	<5	<1	11±1	3±1	<1	<1	<10	<5	<5	<2			
05/04	<5	<1	7±1	3±1	<1	<1	<10	<5	<5	<2			
10/05	<5	<1	25±2	<2	16±0,2	<1	<10	<5	<5	<2			
07/06	<5	<1	<2	<2	2,2±0,2	<1	<10	<5	<5	<2			
05/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2			
02/08	<5	<1	<2	<2	3±1	<1	<10	<5	<5	<2			
06/09	<5	<1	4±1	2±1	3±1	<1	<10	<5	<5	<2			
04/10	<5	<1	3±1	2±1	2±1	<1	<10	<5	<5	<2			
15/11	<5	<1	12±1	3±1	4±1	<1	<10	<5	<5	<2			
06/12	5	<1	26±1	8±1	<1	<1	<10	<5	<5	<2			

Tabla I.1 (continuación)

Año					Ме	etal/metaloide (µ	g/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011											
03/01	<5	<1	25±1	7±1	<1	<1	<10	6±1	16±1	<2	0,6±0,1
01/02	7±1	0,6±0,1	38±1	9±1	<1	<1	4±1	11±1	17±1	<2	0,5±0,1
01/03	6±1	<0,5	26±1	5±1	<1	<1	3±1	7±1	17±1	<2	<0,5
04/04	2±1	<0,5	4±1	2±1	<1	<1	2±1	2±1	1	<2	<0,5
03/05	2±1	<0,5	13±1	3±1	<1	<1	3±1	2±1	1	<2	<0,5
07/06	2±1	<0,5	3±1	2±1	<1	<1	2±1	2±1	<1	<2	<0,5
05/07	2±1	<0,5	2±1	2±1	<1	<1	2±1	2±1	<1	<2	<0,5
01/08	2±1	<0,5	2±1	2±1	<1	<1	2±1	2±1	<1	<2	<0,5
05/09	2±1	<0,5	<2	<2	<1	<1	2±1	2±1	<1	<2	<0,5
03/10	<2	<0,5	7±1	2±1	<1	<1	2±1	2±1	2±1	<2	<0,5
24/10	2±1	<0,5	11±1	5±1	<1	<1	2±1	2±1	2±1	<2	<0,5
11/12	2	<0,5	9±1	3±1	2±1	<1	<2	3±1	5ŕ1	<2	<0,5
2012									-	-	-
02/01	14±1	0,8±0,1	63±4	12±1	2±1	<1	3±1	15±1	35±2	<2	0,6±0,1
29/01	3±1	<0,5	14±1	3±1	<1	<1	3±1	5±1	7±1	<2	<0,5
04/03	3±1	<0,5	9±1	3±1	<1	<1	3±1	3±1	6±1	<2	<0,5
08/04	2±1	<0,5	3±1	<2	<1	<1	3±1	2±1	2±1	<2	<0,5
13/05	2±1	<0,5	2±1	2±1	<1	<1	2±1	2±1	2±1	<2	<0,5
03/06	2±1	<0,5	6±1	3±1	<1	<1	3±1	4±1	2±1	<2	<0,5
01/07	2±1	<0,5	5±1	4±1	<1	<1	<2	3±1	3,0±0,5	<2	<0,5
05/08	2±1	<0,5	<2	<2	<1	<1	2±1	2±1	2±1	<2	<0,5
02/09	2±1	<0,5	<2	<2	<1	<1	2±1	2±1	1±0,5	<2	<0,5
30/09	<2	<0,5	3±1	<2	<1	<1	2±1	2±1	1±0,5	<2	<0,5
04/11	2±1	<0,5	9±1	4±1	<1	<1	<2	5±1	3±1	<2	<0,5
02/12	<2	<0,5	4±1	3±1	<1	<1	<2	3±1	2±1	<2	<0,5

Tabla I.2. Estación: CL 1 Latitud: S 35° 52'15.4" Longitud: O 69° 50'14.0"

Tabla I.2. Estación: CL 1 Descripción: río Grande altura Bardas Blancas

Año	Metal/metaloide (μg/L)											
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio		
2000	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD		
14/02	<10 <10	<1,5 <1,5	<20 <20	15 16	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2		
13/03	<10 <10	<1,5 <1,5	<20 <20	14 4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2		
15/05	- <10	- <1,5	- <20	8 7	- <2	- <1	- <10	- <10	- <7	- <2		
07/08	<10 <10	<1,5 <1.5	33 27	8 5	<2 <2	1,4 <1	<10 <10	<10 <10	<7 <7	<2 <2		
25/09	- <10	- <1,5	- 24	- <4	- <2	- <1	- <10	- <10	- <7	- <2		
06/11	- <10	- <1,5	- <20	- <4	- <2	- <1	- <10	- <10	- <7	- <2		
2001	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD		
12/02	<5	<1	11	16	<1	<1	<10	<5	<5	<2		
23/04	<5	<1	<10	3	<1	<1	<10	<5	7	<2		
25/06	<5	<1	12	3	<1	<1	<10	<5	<5	<2		
13/08	<5	<1	14	3	<1	<1	<10	<5	<5	4		
29/10	<5	<1	9	2	<1	<1	<10	<5	<5	6		
03/12	<5	<1	8	7	<1	<1	<10	<5	<5	<2		
2002	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD		
18/03	<5	<1	6	15	<1	<1	<10	<5	<5	<2		
06/05	<5	<1	4	<2	<1	<1	<10	<5	<5	<2		
24/06	<5	<1	3	3	<1	<1	<10	<5	<5	<2		
12/08	<5	<1	6	6	<1	<1	<10	<5	<5	<2		
07/10	<5	<1	31	8	<1	<1	<10	<5	<5	<2		
25/11	<5	<1	31	21	<1	<1	<10	<5	<5	<2		
2003	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD		
28/04	<5	<1	16	6	<1	<1	<10	<5	<5	<2		
09/06	<5	<1	12	<2	<1	<1	<10	9	<5	<2		
11/08	<5	<1	24	<2	<1	<1	<10	<5	<5	<2		
22/09	<5	<1	26	9	<1	<1	<10	7	<5	<2		
17/11	<5	<1	<2	6	<1	<1	<10	<5	<5	<2		

MI: margen izquierda – MD: margen derecha

Tabla I. 2. (continuación)

Tabla I. Z. (COI	Imadolony				Metal/meta	loido (ug/L)				
Año					ivietai/iiieta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2004										
05/07	<5	<1	12±2	<2	<1	<1	<10	<5	<5	<2
16/08	<5	<1	21±2	6±1	<1	<1	<10	<5	<5	<2
13/09	<5	<1	13±2	4±1	<1	<1	<10	<5	<5	<2
11/10	<5	<1	28±3	<2	<1	<1	<10	<5	<5	<2
15/11	<5	<1	3±1	5±1	<1	<1	<10	<5	<5	<2
13/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2005										
17/01	<5	<1	11±1	17±2	<1	<1	<10	<5	<5	<2
14/02	<5	<1	10±1	3±1	<1	<1	<10	<5	<5	<2
14/03	<5	<1	5±1	12±1	<1	<1	<10	<5	<5	<2
11/04	<5	<1	13±2	11±2	<1	<1	<10	6±1	<5	<2
02/05	<5	<1	5±1	8±1	<1	<1	<10	6±1	<5	<2
13/06	<5	<1	7±1	5±1	<1	<1	<10	<5	<5	<2
2006										
09/01	<5	<1	42±4	26±2	<1	<1	<10	<5	<5	<2
20/02	<5	<1	19±2	16±2	<1	<1	<10	<5	<5	<2
13/03	<5	<1	8±1	10±2	<1	<1	<10	<5	<5	<2
17/04	<5	<1	3±0,5	8±1	<1	<1	<10	<5	<5	<2
08/05	<5	<1	8±1	4±0,5	<1	<1	<10	<5	<5	<2
12/06	<5	<1	6±0,8	<2	<1	<1	<10	7±0,8	<5	<2
10/07	<5	<1	7±0,8	2±0,7	<1	<1	<10	5±0,5	<5	<2
07/08	<5	<1	25±4	2±1	<1	<1	<10	<5	<5	<2
11/09	<5	<1	13±2	<2	<1	<1	<10	<5	<5	<2
09/10	<5	<1	20±2	3±1	<1	<1	<10	<5	<5	<2
13/11	<5	<1	14±1	20±2	<1	<1	<10	<5	<5	<2
11/12	<5	<1	5±1	12±2	<1	<1	<10	<5	<5	<2

Tabla I.2. (continuación)

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2007										
08/01	<5	<1	6±10	11±2	<1	<1	<10	<5	<5	<2
12/02	<5	<1	<2	10±1	<1	<1	<10	<5	<5	<2
12/03	<5	<1	39±3	22±3	<1	<1	<10	<5	<5	<2
09/04	<5	<1	3±1	3±1	<1	<1	<10	<5	<5	<2
07/05	<5	<1	3±1	5±1	<1	<1	<10	<5	<5	<2
11/06	<5	<1	15±3	<2	<1	<1	<10	<5	<5	<2
09/07	<5	<1	13±2	5±1	<1	<1	<10	<5	<5	<2
06/08	<5	<1	16±2	5±1	<1	<1	<10	<5	<5	<2
10/09	<5	<1	24±2	7±1	<1	<1	<10	<5	<5	<2
15/10	<5	<1	20±2	3±1	<1	<1	<10	<5	<5	<2
12/11	<5	<1	20±2	3±1	<1	<1	<10	<5	<5	<2
12/12	<5	<1	32±3	11±2	<1	<1	<10	<5	<5	<2
2008										
07/01	<5	<1	26±2	13±2	<1	<1	<10	<5	<5	<2
11/02	<5	<1	5±1	7±1	<1	<1	<10	<5	<5	<2
10/03	<5	<1	4±1	5±1	<1	<1	<10	<5	<5	<2
14/04	<5	<1	<2	6±1	<1	<1	<10	<5	<5	<2
12/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
09/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
07/07	<5	<1	<2	2±1	<1	<1	<10	<5	<5	<2
04/08	<5	<1	5±1	<2	<1	<1	<10	<5	<5	<2
08/09	<5	<1	<2	3±	<1	<1	<10	<5	<5	<2
30/09	<5	<1	34±3	9±2	<1	<1	<10	<5	<5	<2
10/11	<5	<1	9±1	12±1	<1	<1	<10	<5	<5	<2
08/12	<5	<1	4±1	9±1	<1	<1	<10	<5	<5	<2

Tabla 1.2. (continuación)

Año					Metal/meta	lloide (μg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2009										
05/01	<5	<1	10±1	19±2	<1	<1	<10	<5	10±1	<0
02/02	<5	<1	<2	9±2	<1	<1	<10	<5	<5	<2
09/03	<5	<1	7±1	8±1	<1	<1	<10	<5	<5	<2
13/04	<5	<1	<2	5±1	<1	<1	<10	<5	<5	<2
04/05	<5	<1	13±1	6±1	<1	<1	<10	<5	<5	<2
02/06	<5	<1	4±1	5±1	<1	<1	<10	<5	<5	<2
06/07	-	-	-	-	-	-	-	-	-	-
03/08	<5	<1	<2	5±1	<1	<1	<10	<5	<5	<2
31/08	<5	<1	5±1	5±1	<1	<1	<10	<5	<5	<2
29/09	<5	<1	3±1	4±1	<1	<1	<10	<5	<5	<2
02/11	<5	<1	9±1	8±1	3±1	<1	<1	5±1	<5	<2
14/12	<5	<1	5±1	8±1	3±1	<1	<10	<5	<5	<2
2010						-			•	
11/01	<5	<1	4±1	8±1	<1	<1	<10	<5	<5	<2
08/02	<5	<1	10±1	02±1	<1	<1	<10	<5	<5	<2
08/03	<5	<1	2±1	12±1	<1	<1	<10	<5	<5	<2
05/04	<5	<1	2±1	8±1	<1	<1	<10	<5	<5	<2
10/05	<5	<1	<2	7±1	2,4±0,2	<1	<10	<5	<5	<2
07/06	<5	<1	<2	3±1	<1	<1	<10	<5	<5	<2
05/07	<5	<1	4±1	4±1	<1	<1	<10	<5	<5	<2
02/08	<5	<1	4±1	6±1	4±1	<1	<10	<5	<5	<2
06/09	<5	<1	8±1	7±1	4±1	<1	<10	<5	<5	<2
04/10	<5	<1	14±1	23±1	3±1	<1	<10	6±1	<5	<2
15/11	<5	<1	4±1	13±1	4±1	<1	<10	<5	<5	<2
06/11	<5	<1	11±1	12±1	<1	<1	<10	<5	<5	<2

Tabla 1.2. (continuación)

Año					Me	etal/metaloide (μο	g/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011											
03/01	<5	<1	5±1	12±1	<1	<1	<10	<5	<5	<2	<0,5
01/02	<2	<0,5	4±1	11±1	<1	<1	<2	3±1	<1	<2	<0,5
01/03	3±1	<0,5	3±1	8±1	<1	<1	<2	3±1	<1	<2	<0,5
04/04	2±1	<0,5	3±1	7±1	<1	<1	<2	3±1	<1	<2	<0,5
02/05	2±1	<0,5	8±1	9±1	<1	<1	<2	3±1	<1	<2	<0,5
06/06	2±1	<0,5	4±1	7±1	<1	<1	<2	3±1	<1	<2	<0,5
04/07	2±1	<0,5	2±1	4±1	<1	<1	<2	3±1	<1	<2	<0,5
-	-	-	-	-	-	-	-	-	-	-	-
05/09	5±1	<0,5	<2	5±1	<1	<1	<2	4±1	<1	<2	<0,5
03/10	3±1	<0,5	7±1	12±1	<1	<1	<2	3±1	3±1	<2	<0,5
24/10	<2	<0,5	3±1	6±1	<1	<1	<2	3±1	3±1	<2	<0,5
11/12	<2	<0,5	4±1	9±1	1±0,5	<1	<2	2±1	2±1	<2	<0,5
2012											
02/01	6±1	<0,5	9±1	17±1	1±0,5	<1	<2	4±1	3±1	<2	<0,5
29/01	2±1	<0,5	3±1	7±1	<1	<1	<2	3±1	2±1	<2	<0,5
04/03	2±1	<0,5	3±1	12±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
08/04	2±1	<0,5	3±1	6±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
13/05	2±1	<0,5	2±1	5±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
03/06	2±1	<0,5	4±1	6±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
01/07	2±1	<0,5	5±1	5±1	<1	<1	<2	4±1	3,0±0,5	<2	<0,5
05/08	2±1	<0,5	<2	5±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
02/09	2±1	<0,5	<2	8±1	<1	<1	<2	4±1	1±0,5	<2	<0,5
30/09	<2	<0,5	3±1	5±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
04/11	3±1	<0,5	9±1	12±1	<1	<1	<2	5±1	3±0,5	<2	<0,5
02/12	<2	<0,5	4±1	7±1	<1	<1	<2	4±1	1,4±0,5	<2	<0,5

Tabla I.3. Estación: CL 2 Descripción: río Colorado altura Buta Ranquil (Puente El Portón)

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2000	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD
14/02	<10 <10	<1,5 <1,5	38 40	36 40	<2 <2	<1 <1	<10 <10	<10 <10	10 12	<2 <2
13/03	<10 <10	<1,5 <1,5	57 <20	5 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
15/05	<10 <10	<1,5 <1,5	26 34	10 14	<2 <2	<1 <1	<10 <10	11 17	<7 <7	<2 <2
07/08	<10 <10	<1,5 <1.5	25 30	<4 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
25/09	- <10	- <1,5	- 23	- <4	- <2	- <1	- <10	- <10	- <7	- <2
06/11	- <10	- <1,5	- <20	- <4	- <2	- <1	- <10	- <10	- <7	- <2
2001	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
12/02	<5	<1	12	5	<1	<1	<10	<5	7	<2
23/04	<5	<1	<10	<2	<1	<1	<10	<5	<5	3
25/06	<5	<1	<10	<2	<1	<1	<10	<5	<5	3
13/08	<5	<1	13	<2	<1	<1	<10	<5	<5	<2
29/10	<5	<1	9	3	<1	<1	<10	<5	<5	<2
03/12	<5	<1	14	11	<1	<1	<10	<5	<5	6
2002	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
18/03	<5	<1	11	18	<1	<1	<10	<5	<5	5
06/05	<5	<1	6	<2	<1	<1	<10	<5	<5	<2
24/06	<5	<1	<2	<2	<1	<1	<10	5	<5	<2
12/08	<5	<1	6	4	<1	<1	<10	<5	<5	4
07/10	<5	<1	32	11	<1	<1	<10	<5	<5	5
25/11	<5	<1	33	20	<1	<1	<10	9	<5	7
2003	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
28/04	<5	<1	15	<2	<1	<1	<10	<5	<5	<2
09/06	<5	<1	12	<2	<1	<1	<10	<5	<5	<2
11/08	<5	<1	23	<2	<1	<1	<10	<5	<5	<2
22/09	<5	<1	21	<2	<1	<1	<10	<5	<5	<2
17/11	<5	<1	<2	4	<1	<1	<10	<5	<5	<2

Longitud: O 69° 38' 40.2"

Latitud: S 37° 07' 48.7"

Tabla I.3. (continuación)

Año	,				Metal/meta	loide (µg/L)				
70	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2004										
05/07	<5	<1	11±1	<2	<1	<1	<10	<5	<5	<2
16/08	<5	<1	20±1	<2	<1	<1	<10	<5	<5	<2
13/09	<5	<1	12±2	<2	<1	<1	<10	11±2	<5	<2
11/10	<5	<1	27±3	<2	<1	<1	<10	<5	<5	<2
15/11	<5	<1	3±1	5±1	<1	<1	<10	<5	<5	<2
13/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2005				-	•		•			
17/01	<5	<1	18±2	7±1	<1	<1	<10	<5	<5	<2
14/02	<5	<1	18±2	3±1	<1	<1	<10	<5	<5	<2
14/03	<5	<1	13±2	19±2	<1	<1	<10	<5	<5	<2
11/04	<5	<1	14±2	13±2	<1	<1	<10	<5	<5	<2
05/05	<5	<1	6±1	3±1	<1	<1	<10	<5	<5	<2
13/06	<5	<1	3±1	2±1	<1	<1	<10	<5	<5	<2
2006				-	-		•			
09/01	<5	<1	156±15	31±3	<1	<1	<10	<5	<5	<2
20/02	<5	<1	36±3	15±2	<1	<1	<10	<5	11±1	<2
13/03	<5	<1	14±1	7±1	<1	<1	<10	7±	<5	<2
17/04	<5	<1	11±1	4±0,5	<1	<1	<10	<5	<5	<2
08/05	<5	<1	5±0,6	<2	<1	<1	<10	<5	<5	<2
12/06	<5	<1	4±0,5	<2	<1	<1	<10	8±0,8	<5	<2
10/07	<5	<1	5±0,6	3±1	<1	<1	<10	7±0,7	<5	<2
07/08	<5	<1	18±3	<2	<1	<1	<10	<58	<5	<2
11/09	<5	<1	5±1	5±1	<1	<1	<10	<5	<5	<2
09/10	<5	<1	21±2	<2	<1	<1	<10	<5	<5	<2
13/11	<5	<1	32±2	26±2	<1	<1	<10	7±1	<5	<2
11/12	<5	<1	8±1	12±1	<1	<1	<10	<5	<5	<2

Tabla I.3. (continuación)

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2007										
08/01	<5	<1	13±1	11±2	<1	<1	<10	<5	<5	<2
12/02	<5	<1	11±1	4±1	<1	<1	<10	<5	<5	<2
12/03	<5	<1	16±2	10±2	<1	<1	<10	<5	<5	<2
09/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
07/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/06	<5	<1	13±3	3±1	<1	<1	<10	<5	<5	<2
09/07	<5	<1	10±2	3±1	<1	<1	<10	<5	<5	<2
06/08	<5	<1	12±2	<2	<1	<1	<10	<5	<5	<2
10/09	<5	<1	10±2	5±1	<1	<1	<10	<5	<5	<2
15/10	<5	<1	11±2	<2	<1	<1	<10	<5	<5	<2
12/11	<5	<1	14±2	<2	<1	<1	<10	<5	<5	<2
10/12	<5	<1	17±2	4±1	<1	<1	<10	<5	<5	<2
2008										
07/01	<5	<1	29±3	9±1	<1	<1	<10	<5	<5	<2
11/02	<5	<1	8±1	5±1	<1	<1	<10	<5	<5	<2
10/03	<5	<1	13±2	<2	<1	<1	<10	<5	<5	<2
14/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
12/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
09/06	<5	<1	8±1	4±1	<1	<1	<10	<5	<5	<2
07/07	<5	<1	30±2	3±1	<1	<1	<10	<5	<5	<2
04/08	<5	<1	12±1	<2	<1	<1	<10	<5	<5	<2
08/09	<5	<1	<2	3±1	<1	<1	<10	<5	<5	<2
30/09	<5	<1	15±2	8±1	<1	<1	<10	<5	<5	<2
10/11	<5	<1	10±1	11±1	<1	<1	<10	<5	<5	<2
08/12	<5	<1	5±1	15±2	<1	<1	<10	8±1	<5	<2

Tabla I.3. (continuación)

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2009										
05/01	6±1	<1	7±1	9±1	<1	<1	<10	<5	13±1	<2
02/02	<5	<1	5±1	4±1	<1	<1	<10	<5	<5	<2
09/03	<5	<1	10±1	3±1	<1	<1	<10	<5	<5	<2
13/04	<5	<1	<2	2±1	<1	<1	<10	<5	<5	<2
04/05	<5	<1	19±2	<2	<1	<1	<10	<5	<5	<2
02/06	<5	<1	2±1	<2	<1	<1	<10	<5	<5	<2
06/07	<5	<1	6±1	6±1	<1	<1	<10	<5	<5	<2
03/08	<5	<1	12±1	3±1	<1	<1	<10	<5	<5	<2
31/08	<5	<1	7±1	6±1	<1	<1	<10	<5	<5	<2
29/09	<5	<1	8±1	3±1	<1	<1	<10	<5	<5	<2
02/11	<5	<1	18±2	18±1	5±1	<1	<10	11±1	<5	<2
14/12	<5	<5	12±2	12±2	5±1	<1	<10	6±1	<5	<2
2010										
11/01	<5	<1	<2	9±1	<1	<1	<10	11±1	<5	<2
08/02	<5	<1	18±2	4±1	<1	<1	<10	<5	<5	<2
08/03	<5	<1	2±1	6±1	<1	<1	<10	<5	<5	<2
05/04	<5	<1	3±1	4±1	<1	<1	<10	<5	<5	<2
10/05	<5	<1	12±1	3±1	2,7±0,2	<1	<10	<5	<5	<2
07/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
05/07	<5	<1	11±2	<2	<1	<1	<10	<5	<5	<2
02/08	<5	<1	<2	3±	4±1	<1	<10	<5	<5	<2
06/09	<5	<1	15±2	3±1	4±1	<1	<10	<5	<5	<2
04/10	<5	<1	14±1	17±1	4±1	<1	<10	6±1	<5	<2
15/11	<5	<1	2±1	5±1	5±1	<1	<10	<5	<5	<2
06/11	<5	<1	3±1	5±1	<1	<1	<10	<5	<5	<2

Tabla I.3. (continuación)

A ~					Me	etal/metaloide (μ	g/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011						•			•		•
03/01	<5	<1	18±1	10±1	<1	<1	<10	6±1	13±1	<2	<0,5
01/02	4±1	<0,5	13±1	9±1	<1	<1	<2	6±1	5±1	<2	0,5±0,1
01/03	5±1	<0,5	20±1	7±1	<1	<1	<2	7±1	10±1	<2	0,7±0,1
04/04	2±1	<0,5	3±1	3±1	<1	<1	<2	3±1	<1	<2	<0,5
03/05	3±1	<0,5	3±1	5±1	<1	<1	<2	3±1	<1	<2	<0,5
07/06	3±1	<0,5	10±1	6±1	<1	<1	<2	4±1	<1	<2	0,5±0,1
05/07	2±1	<0,5	2±1	4±1	<1	<1	2±1	3±1	<1	<2	<0,5
01/08	2±1	<0,5	3±1	3±1	<1	<1	2±1	3±1	<1	<2	<0,5
06/09	2±1	<0,5	<2	3±1	<1	<1	2±1	3±1	<1	<2	<0,5
04/10	3±1	<0,5	14±1	12±1	<1	<1	<2	7±1	6±1	<2	1±0,1
25/10	3±1	<0,5	13±1	13±1	<1	<1	<2	7±1	6±1	<2	1±0,1
12/12	2±1	<0,5	5±1	7±1	1±0,5	<1	<2	2±1	3±1	<2	<0,5
2012											
03/01	7±1	<0,5	24±2	13±1	1±0,5	<1	<2	8±1	12±1	<2	<0,5
30/01	2±1	<0,5	3±1	3±1	<1	<1	<2	3±1	2±1	<2	<0,5
05/03	<2	<0,5	3±1	4±1	<1	<1	<2	3±1	2±1	<2	<0,5
09/04	2±1	<0,5	3±1	3±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
14/05	2±1	<0,5	2±1	3±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
04/06	3±1	<0,5	5±1	8±1	<1	<1	<2	4±1	2±1	<2	<0,5
02/07	2±1	<0,5	7±1	6±1	<1	<1	<2	4±1	3,0±0,5	<2	0,6±0,1
06/08	2±1	<0,5	<2	3±1	<1	<1	2±1	3±1	1±0,5	<2	<0,5
03/09	2±1	<0,5	<2	3±1	<1	<1	<2	3±1	<1	<2	<0,5
01/10	2±1	<0,5	5±1	7±1	<1	<1	<2	4±1	1±0,5	<2	<0,5
05/11	4±1	<0,5	14±1	16±1	<1	<1	<2	8±1	6±1	<2	0,5±0,1
03/12	<2	<0,5	4±1	5±1	<1	<1	<2	4±1	1,6±0,5	<2	<0,5

Tabla I.4. Estación: C L 3

Descripción: río Colorado altura Desfiladero Bayo

Latitud: S 37º 21' 57.7"

Longitud: O 69º 01'00.1"

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2000	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD
14/02	<10 <10	<1,5 <1,5	73 66	68 65	2 <2	<1 <1	<10 <10	12 <10	9 <7	<2 <2
13/03	<10 <10	<1,5 <1,5	<20 <20	<4 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
15/05	<10 <10	<1,5 <1,5	55 52	13 9	<2 <2	<1 <1	<10 <10	28 24	<7 <7	<2 <2
07/08	<10 <10	<1,5 <1.5	22 22	<4 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
25/09	- <10	- <1,5	- 22	- <4	- <2	- <1	- <10	- <10	- <7	- <2
06/11	- <10	- <1,5	- <20	- <4	- <2	- <1	- <10	- <10	- <7	- <2
2001	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
12/02	<5	<1	12	4	<1	<1	<10	<5	<5	<2
23/04	<5	<1	<10	<2	<1	<1	<10	<5	<5	3
25/06	<5/<5 ⁽¹⁾	<1/<1	11/11	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	4/ 5
13/08	<5	<1	13	<2	<1	<1	<10	<5	<5	<2
29/10	<5	<1	10	4	<1	<1	<10	<5	<5	4
03/12	<5	<1	19	16	<1	<1	<10	<5	<5	6
2002	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
18/03	<5	<1	43	40	1,5	<1	<10	11	7	3
06/05	<5	<1	14	<2	<1	<1	<10	<5	<5	<2
24/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
12/08	<5	<1	5	4	<1	<1	<10	<5	<5	<2
07/10	<5	<1	35	12	<1	<1	<10	12	<5	9
25/11	<5	<1	33	21	2	<1	<10	15	<5	3
2003	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
28/04	<5	<1	15	<2	<1	<1	<10	<5	<5	<2
09/06	<5	<1	11	<2	<1	<1	<10	7	<5	<2
11/08	<5	<1	22	<2	<1	<1	<10	<5	<5	<2
22/09	<5	<1	21	<2	<1	<1	<10	<5	<5	<2
17/11	<5	<1	<2	5	<1	<1	<10	<5	<5	<2

Tabla I. 4 (continuación)

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2004										
05/07	<5	<1	14±2	<2	<1	<1	<10	<5	<5	<2
16/08	<5	<1	19±2	<2	<1	<1	<10	<5	<5	<2
13/09	<5	<1	11±2	<2	<1	<1	<10	<5	<5	<2
11/10	<5	<1	19±2	10±2	<1	<1	<10	<5	<5	<2
15/11	<5	<1	4±1	<2	<1	<1	<10	<5	<5	<2
13/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2005										
17/01	<5	<1	13±1	5±1	<1	<1	<10	<5	<5	<2
14/02	<5	<1	26±3	5±1	<1	<1	<10	5±1	9±1	<2
14/03	<5	<1	40±4	20±2	2±1	<1	<10	12±2	8±1	<2
11/04	<5	<1	9±1	9±1	<1	<1	<10	<5	<5	<2
02/05	<5	<1	3±1	3±1	<1	<1	<10	9±2	<5	<2
13/06	<5	<1	5±1	4±1	<1	<1	<10	<5	<5	<2
2006										
09/01	<5	<1	51±5	42±4	<1	<1	<10	15±1,9	<5	<2
20/02	<5	<1	30±3	17±4	<1	<1	<10	9±1	<5	<2
13/03	<5	<1	6±1	5±1	<1	<1	<10	<5	<5	<2
17/04	<5	<1	20±2	4±0,5	<1	<1	<10	<5	<5	<2
08/05	<5	<1	3±0,5	<2	<1	<1	<10	<5	<5	<2
12/06	<5	<1	7±1	<2	<1	<1	<10	9±1	<5	<2
10/07	<5	<1	8±1	2±0,8	<1	<1	<10	7±0,8	<5	<2
07/08	<5	<1	17±2	<2	<1	<1	<10	<5	<5	<2
11/09	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
09/10	<5	<1	26±3	<2	<1	<1	<10	<5	<5	<2
13/11	<5	<1	24±2	26±2	<1	<1	<10	9±1	<5	<2
11/12	<5	<1	7±1	12±1	<1	<1	<10	<5	<5	<2

Tabla I.4. (continuación)

Año	unuaciony				Metal/meta	ıloide (μg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2007										
08/01	<5	<1	14±1	13±2	<1	<1	<10	<5	<5	<2
12/02	<5	<1	39±4	21±2	<1	<1	<10	29±3	<5	<2
12/03	<5	<1	29±2	16±2	<1	<1	<10	<5	<5	<2
09/04	<5	<1	<2	3±1	<1	<1	<10	<5	<5	<2
07/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/06	<5	<1	11±2	<2	<1	<1	<10	<5	<5	<2
09/07	<5	<1	11±2	3±1	<1	<1	<10	<5	<5	<2
06/08	<5	<1	12±2	<2	<1	<1	<10	<5	<5	<2
10/09	<5	<1	12±2	<2	<1	<1	<10	<5	<5	<2
15/10	<5	<1	10±2	<2	<1	<1	<10	<5	<5	<2
12/11	<5	<1	14±2	4±1	<1	<1	<10	<5	<5	<2
10/12	<5	<1	29±3	5±1	<1	<1	<10	<5	<5	<2
2008										
07/01	<5	<1	20±2	8±1	<1	<1	<10	<5	<5	<2
11/02	<5	<1	24±2	6±1	<1	<1	<10	<5	<5	<2
10/03	<5	<1	30±2	5±1	<1	<1	<10	<5	<5	<2
14/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
12/05	<5	<1	21±2	<2	<1	<1	<10	<5	<5	<2
09/06	<5	<1	4±1	4±1	<1	<1	<10	<5	<5	<2
07/07	<5	<1	20±2	3±1	<1	<1	<10	<5	<5	<2
04/08	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
08/09	<5	<1	22±2	<2	<1	<1	<10	<5	<5	<2
30/09	<5	<1	<2	6±1	<1	<1	<10	<5	<5	<2
10/11	<5	<1	20±1	10±1	<1	<1	<10	<5	<5	<2
08/12	<5	<1	4±1	13±1	<1	<1	<10	<5	<5	<2

Tabla I.4. (continuación)

Año					Metal/meta	loide (µg/L)				
7410	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2009				•	•				•	
05/01	<5	<1	3±1	8±1	<1	<1	<10	<5	8±1	<2
02/02	<5	<1	21±1	4±1	<1	<1	<10	<5	<5	<2
09/03	<5	<1	6±1	3±1	<1	<1	<10	<5	<5	<2
13/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
04/05	<5	<1	4±1	3±1	<1	<1	<10	<5	<5	<2
02/06	<5	<1	4±1	<2	<1	<1	<10	<5	<5	<2
06/07	<5	<1	5±1	4±1	<1	<1	<10	<5	<5	<2
03/08	<5	<1	8±1	<2	<1	<1	<10	<5	<5	<2
31/08	<5	<1	8±1	6±1	<1	<1	<10	<5	<5	<2
29/09	<5	<1	5±1	2±1	<1	<1	<10	<5	<5	<2
02/11	<5	<1	19±2	18±2	5±1	<1	<10	11±1	6±1	<2
14/12	<5	<1	11±2	12±2	5±1	<1	<10	6±1	<5	<2
2010										
11/01	<5	<1	9±1	5±1	<1	<1	<10	10±1	<5	<2
08/02	<5	<1	26±3	4±1	<1	<1	<10	<5	<5	<2
08/03	<5	<1	3±1	5±1	<1	<1	<10	<5	<5	<2
05/04	<5	<1	2±1	3±1	<1	<1	<10	<5	<5	<2
10/05	<5	<1	<2	3±1	2,7±0,2	<1	<10	<5	<5	<2
07/06	<5	<1	4±1	3±1	<1	<1	<10	7±1	<5	<2
05/07	<5	<1	13±2	<2	<1	<1	<10	<5	<5	<2
02/08	<5	<1	<2	2±1	4±1	<1	<10	<5	<5	<2
06/09	<5	<1	<2	3±1	4±1	<1	<10	<5	<5	<2
04/10	<5	<1	7±1	9±1	4±1	<1	<10	<5	<5	<2
15/11	<5	<1	2±1	5±1	4±1	<1	<10	<5	<5	<2
06/12	<5	<1	15±1	4±1	<1	<1	<10	<5	<5	<2

Tabla I.4. continuación)

Año					Me	etal/metaloide (μι	g/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011					•	•			•	•	
03/01	5±1	<1	36±1	18±1	<1	<1	<10	12±1	21±1	<2	<2
01/02	6±1	<0,5	28±1	12±1	<1	<1	3±1	9±1	14±1	<2	0,6±0,1
01/03	4±1	<0,5	15±1	6±1	<1	<1	<2	6±1	8±1	<2	0,7±0,1
04/04	2±1	<0,5	19±1	3±1	<1	<1	<2	3±1	<1	<2	<0,5
03/05	3±1	<0,5	13±1	5±1	<1	<1	2±1	3±1	<1	<2	<0,5
07/06	2±1	<0,5	14±1	3±1	<1	<1	<2	3±1	2±1	<2	<0,5
05/07	2±1	<0,5	2±1	4±1	<1	<1	2±1	3±1	<1	<2	<0,5
01/08	2±1	<0,5	2±1	3±1	<1	<1	2±1	3±1	<1	<2	<0,5
06/09	2±1	<0,5	<2	3±1	<1	<1	2±1	4±1	<1	<2	<0,5
04/10	2±1	<0,5	7±1	8±1	<1	<1	2±1	4±1	2±1	<2	0,6±0,1
25/10	4±1	<0,5	16±1	18±1	<1	<1	2±1	4±1	4±1	<2	0,6±0,1
12/12	2±1	<0,5	8±1	9±1	2±1	<1	<2	3±1	4±1	<2	<0,5
2012											
03/01	16±1	0,9±0,1	75±5	21±1	2±1	<1	2±1	16±1	37±2	<2	0,6±0,1
30/01	4±1	<0,5	9±1	5±1	<1	<1	<2	5±1	7±1	<2	<0,5
05/03	<2	<0,5	2±1	3±1	<1	<1	<2	3±1	2±1	<2	<0,5
09/04	2±1	<0,5	3±1	3±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
14/05	2±1	<0,5	3±1	3±1	<1	<1	<2	3±1	1±0,5	<2	<0,5
04/06	3±1	<0,5	13±2	10±1	<1	<1	<2	7±1	4±1	<2	0,7±0,1
02/07	2±1	<0,5	5±1	5±1	<1	<1	<2	3±1	2,0±0,4	<2	<0,5
06/08	2±1	<0,5	2±1	3±1	<1	<1	2±1	3±1	<1	<2	<0,5
03/09	2±1	<0,5	<2	3±1	<1	<1	<2	3±1	<1	<2	<0,5
01/10	2±1	<0,5	4±1	7±1	<1	<1	<2	4±1	1±0,5	<2	<0,5
05/11	4±1	<0,5	16±1	18±1	<1	<1	<2	8±1	6±1	<2	0,6±0,1
03/12	2±1	<0,5	5±1	6±1	<1	<1	<2	5±1	2±1	<2	<0,5

Tabla I. 5. Estación: CL 4

Descripción: río Colorado altura Punto Unido Metal/metaloide (µg/L) Año Molibdeno Arsénico Cadmio Cinc Cobre Cromo Mercurio Níquel Plomo Selenio 2000 MI MD 28 14/02 <10 <10 <1,5 <1,5 28 22 19 <2 <2 <1 <1 <10 <10 <10 <10 10 <7 <2 <2 13/03 <10 <10 <1,5 <1,5 <20 <20 <4 <4 <2 <2 <1 <1 <10 <10 <10 <10 <7 <7 <2 <2 15/05 <10 <10 <1,5 <1,5 <20 <20 <4 5 <2 <2 <1 <1 <10 <10 <10 <10 <7 <7 <2 <2 07/08 <10 <10 <1,5 <1,5 28 25 <4 <4 <2 <2 <1 <1 <10 <10 <10 <10 <7 <7 <2 <2 25/09 <10 -<1,5 -22 <4 <2 -<1 -<10 -- <10 <7 -<2 -06/11 <10 -<1,5 -<20 5 <2 -<1 -<10 -- 10 <7 -<2 --2001 MI 12/02 <5 <1 12 5 <1 <1 <10 <5 <5 <2 23/04 <5 <1 <10 <2 <1 <1 <10 <5 <5 <2 25/06 <5 11 <2 <5 <5 <1 <1 <1 <10 <2 13/08 <5 <1 13 <2 <1 <1 <10 <5 <5 6 29/10 <5 <1 10 6 <1 <1 <10 <5 <5 6 03/12 <5 <1 24 19 <1 <1 <10 8 <5 3 2002 MI 18/03 <5 5 <2 <1 20 19 1.3 <1 <10 <5 06/05 <5 <1 9 <2 <1 <1 <10 <5 <5 <2 <5 24/06 <5 <1 <2 <2 <1 <1 <10 <5 <2 12/08 <5 <1 7 <1 <1 <10 <5 <5 07/10 <5 <1 34 10 <1 <1 <10 13 <5 4 25/11 <5 <1 31 17 <1 <1 <10 <5 <5 4 2003 MI 28/04 <5 <1 14 <2 <1 <1 <10 <5 <5 <2 09/06 <5 <1 11 <2 <1 <1 <10 <5 <5 <2 12/08 <5 <1 23 <2 <1 <1 <10 <5 <5 <2 22/09 <5 <1 21 <1 <1 <10 <5 <2 <5 <2 17/11 <5 <1 <1 <10 <5 <5 <2 4 <1

Latitud: S 37° 43' 28.5"

Longitud: O 67° 45' 50.7"

Tabla I.5. (continuación)

	·				Metal/meta	loide (µg/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2004		•		•	-	-	•		-	•
05/07	<5	<1	11±1	<2	<1	<1	<10	<5	<5	<2
16/08	<5	<1	21±2	2±1	<1	<1	<10	<5	<5	<2
14/09	<5	<1	13±2	<2	<1	<1	<10	<5	<5	<2
12/10	<5	<1	15±2	12±2	<1	<1	<10	<5	<5	<2
16/11	<5	<1	4±1	<2	<1	<1	<10	<5	<5	<2
14/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2005										
18/01	<5	<1	11±1	4±1	<1	<1	<10	<5	<5	<2
15/02	6±1	<1	26±3	4±1	<1	<1	<10	12±2	<5	5±1
15/03	<5	<1	11±1	4±1	<1	<1	<10	<5	<5	<2
12/04	<5	<1	8±1	8±1	<1	<1	<10	11±2	<5	<2
03/05	<5	<1	29±3	3±1	<1	<1	<10	<5	<5	<2
14/06	<5	<1	13±2	8±1	<1	<1	<10	<5	<5	<2
2006										
10/01	<5	<1	118±11	44±4	<1	<1	<10	20±2	<5	<2
21/02	10±1	<1	47±5	27±3	2±0,6	<1	<10	26±2	12±1	<2
13/03	<5	<1	6±1	5±1	<1	<1	<10	5±1	<5	<2
18/04	<5	<1	12±2	4±0,5	<1	<1	<10	<5	<5	<2
08/05	<5	<1	7±1	<2	<1	<1	<10	<5	<5	<2
12/06	<5	<1	13±2	<2	<1	<1	<10	10±1	<5	<2
01/07	<5	<1	11±1	<2	<1	<1	<10	8±0,9	<5	<2
07/08	<5	<1	18±2	<2	<1	<1	<10	<5	<5	<2
11/09	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
09/10	<5	<1	20±2	<2	<1	<1	<10	<5	<5	<2
13/11	<5	<1	30±2	27±2	<1	<1	<10	10±1	<5	<2
11/12	<5	<1	4±1	9±1	<1	<1	<10	<5	<5	<2

Año					Metal/meta	ıloide (μg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2007		•		-	•	-			•	
08/01	<5	<1	15±2	14±2	<1	<1	<10	<5	<5	<2
13/02	<5	<1	15±1	5±1	<1	<1	<10	<5	<5	<2
12/03	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
09/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
07/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/06	<5	<1	15±3	<2	<1	<1	<10	<5	<5	<2
09/07	<5	<1	12±2	4±1	<1	<1	<10	<5	<5	<2
06/08	<5	<1	14±2	<2	<1	<1	<10	<5	<5	<2
10/09	<5	<1	14±2	<2	<1	<1	<10	<5	<5	<2
15/10	<5	<1	12±2	<2	<1	<1	<10	<5	<5	<2
12/11	<5	<1	24±3	12±2	<1	<1	<10	<5	<5	<2
10/12	<5	<1	6±1	4±1	<1	<1	<10	<5	<5	<2
2008										
07/01	<5	<1	12±1	5±1	<1	<1	<10	<5	<5	<2
11/02	<5	<1	13±1	8±1	<1	<1	<10	<5	<5	<2
10/03	<5	<1	35±3	9±2	<1	<1	<10	<5	11±2	<2
14/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
13/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
10/06	<5	<1	4±	4±	<1	<1	<10	<5	<5	<2
07/07	<5	<1	39±2	3±1	<1	<1	<10	<5	<5	<2
05/08	<5	<1	7±1	<2	<1	<1	<10	<5	<5	<2
08/09	<5	<1	20±2	<2	<1	<1	<10	<5	<5	<2
30/09	<5	<1	6±1	8±1	<1	<1	<10	<5	<5	<2
11/11	<5	<1	<2	15±2	<1	<1	<10	<5	<5	<2
08/12	<5	<1	5±1	14±2	<1	<1	<10	<5	<5	<2

Tabla I.5. (continuación)

Tabla I.5. continuación)

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2009		•	•	-	-				•	•
05/01	12±1	2,0±2	71±6	12±1	1,5±0,3	<1	<10	10±1	44±2	<2
02/02	<5	<1	11±2	<2	<1	<1	<10	<5	<5	<2
09/03	<5	<1	41±2	3±1	2±1	<1	<10	<5	9±1	<2
15/04	<5	<1	3±1	<2	<1	<1	<10	<5	<5	<2
04/05	<5	<1	4±1	<2	<1	<1	<10	<5	9±1	<2
02/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
06/07	<5	<1	9±1	6±1	<1	<1	<10	<5	<5	<2
03/08	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
31/08	<5	<1	6±1	3±1	<1	<1	<10	<5	<5	<2
29/09	<5	<1	2±1	<2	<1	<1	<10	<5	<5	<2
02/11	<5	<1	10±1	9±1	3±1	<1	<10	9±1	<5	<2
14/12	<5	<1	6±1	4±1	4±1	<1	<10	<5	<5	<2
2010										
11/01	<5	<1	7±1	7±1	<1	<1	<10	12±1	<5	<2
08/02	<5	<1	19±2	4±1	<1	<1	<10	<5	<5	<2
08/03	<5	<1	3±1	5±1	<1	<1	<10	<5	<5	<2
05/04	<5	<1	2±1	3±1	<1	<1	<10	<5	<5	<2
10/05	<5	<1	4±1	3±1	2,6±0,2	<1	<10	<5	<5	<2
07/06	<5	<1	5±1	3±1	<1	<1	<10	8±1	<5	<2
05/07	<5	<1	20±2	<2	<1	<1	<10	<5	<5	<2
02/08	<5	<1	3±1	2±1	4±1	<1	<10	<5	<5	<2
06/09	<5	<1	2±1	3±1	4±1	<1	<10	<5	<5	<2
04/10	<5	<1	3±1	5±1	2±1	<1	<10	<5	<5	<2
15/11	<5	<1	5±1	4±1	4±1	<1	<10	<5	<5	<2
06/12	<5	<1	3±1	4±1	<1	<1	<10	<5	<5	<2

Tabla I.5. continuación)

Año					М	etal/metaloide (µ	ıg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011											
03/01	<5	<1	17Կ	12±1	<1	<1	<10	10±1	8±1	<2	1,7±0,2
01/02	5±1	<0,5	19±1	9±1	<1	<1	3±1	6±1	10±1	<2	0,7±0,1
01/03	3±1	<0,5	10±1	6±1	<1	<1	<2	6±1	3±1	<2	0,9±0,1
04/04	5±1	<0,5	2±1	3±1	<1	<1	<2	3±1	<1	<2	0,7±0,1
03/05	2±1	<0,5	3±1	4±1	<1	<1	2±1	3±1	<1	<2	0,7±0,1
07/06	2±1	<0,5	33±2	3±1	<1	<1	2±1	3±1	<1	<2	0,6±0,1
05/07	2±1	<0,5	3±1	4±1	<1	<1	2±1	3±1	6±1	<2	0,5±0,1
02/08	2±1	<0,5	13±1	2±1	<1	<1	2±1	3±1	<1	<2	<0,5
06/09	2±1	<0,5	<2	2±1	2±1	<1	2±1	5±1	<1	<2	0,6±0,1
04/10	2±1	<0,5	5±1	6±1	<1	<1	2±1	3±1	3±1	<2	0,6±0,1
25/10	5±1	<0,5	13±1	16±1	<1	<1	2±1	3±1	3±1	<2	0,6±0,1
12/12	3±1	<0,5	16±1	15±1	3±1	<1	<2	5±1	8±1	<2	0,6±0,1
2012											
03/01	6±1	<0,5	18±1	11±1	1±0,5	<1	<2	7±1	9±1	<2	0,5±0,1
30/01	4±1	<0,5	7±1	4±1	<1	<1	2±1	5±1	5±1	<2	0,6±0,1
05/03	<2	<0,5	<2	3±1	<1	<1	2±1	3±1	1±0,5	<2	0,5±0,1
09/04	2±1	<0,5	10±1	3±1	<1	<1	2±1	3±1	1±0,5	<2	0,5±0,1
14/05	2±1	<0,5	5±1	3±1	<1	<1	2±1	3±1	1±0,5	<2	0,6±0,1
04/06	3±1	<0,5	5±1	6±1	<1	<1	2±1	5±1	3±0,5	<2	0,7±0,1
02/07	2±1	<0,5	8±1	4±1	<1	<1	<2	3±1	2,0±0,4	<2	0,6±0,1
06/08	2±1	<0,5	2±1	3±1	<1	<1	2±1	4±1	1±0,5	<2	0,6±0,1
03/09	2±1	<0,5	<2	3±1	<1	<1	2±1	3±1	<1	<2	0,6±0,1
01/10	2±1	<0,5	4±1	5±1	<1	<1	<2	4±1	1±0,5	<2	<0,5
05/11	4±1	<0,5	11±1	13±1	<1	<1	<2	8±1	6±1	<2	0,6±0,1
03/12	2±1	<0,5	6±1	7±1	<1	<1	<2	5±1	3±1	<2	0,5±0,1

Tabla I.6. Estación: CL 5

Latitud: S 38º 01' 34.9"

Longitud: O 67º 52' 53.9"

Descripción: río Colorado altura Pasarela Medanito

۸۵۵					Metal/meta	loide (µg/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2000	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD
15/02	<10 <10	<1,5 <1,5	40 40	20 20	<2 <2	<1 <1	<10 <10	12 13	10 9	<2 <2
14/03	<10 <10	<1,5 <1,5	<20 <20	4 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
16/05	- <10	- <1,5	- <20	- <4	- <2	- <1	- <10	- <10	- <7	- <2
08/08	<10 <10	<1,5 <1.5	28 32	<4 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
26/09	- <10	- <1,5	- 22	- <4	- <2	- <1	- <10	- <10	- <7	- <2
07/11	- <10	- <1,5	- <20	- 7	- <2	- <1	- <10	- <10	- <7	- <2
2001	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
13/02	<5/<5	<1/<1	13/13	5/6	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
24/04	<5	<1	<10	<2	<1	<1	<10	<5	<5	4
26/06	<5	<1	11	<2	<1	<1	<10	<5	<5	3
14/08	<5	<1	13	<2	<1	<1	<10	<5	<5	4
30/10	<5	<1	12	6	<1	<1	<10	<5	<5	<2
04/12	<5	<1	30	23	<1	<1	<10	6	5	3
2002	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
19/03	<5	<1	21	20	<1	<1	<10	14	17	7
07/05	<5	<1	10	<2	<1	<1	<10	<5	<5	<2
25/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
13/08	<5	<1	7	3	<1	<1	<10	<5	<5	<2
08/10	<5	<1	28	4	<1	<1	<10	<5	<5	<2
26/11	<5/<5/<5	<1/<1/<1	36/34/37	19/21/21	<1/<1/<1	<1/<1/<1	<10/<10/<10	7/8/11	<5/<5/<5	3/<2/5
2003	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
28/04	<5/<5	<1/<1	15/15	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
10/06	<5/<5	<1/<1	12/12	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
12/08	<5/<5/<5	<1/<1/<1	24/24/23	<2/<2/<2	<1/<1/<1	<1/<1/<1	<10/<10/<10	<5/<5/<5	<5/<5/<5	<2/<2/<
23/09	<5/<5	<1/<1	22/22	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
18/11	<5/<5	<1/<1	<2/<2	5/8	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2

MI: margen izquierda – MD: margen derecha – (1) muestra duplicada - (2) muestra triplicada

Tabla I.6 (continuación)

.~	·				Metal/meta	loide (µg/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2004										
06/07	<5/<5	<1/<1	9±1/10±1	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
17/08	<5/<5	<1/<1	19±2/13±2	<2/3±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
14/09	<5/<5	<1/<1	12±1/13±2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
12/10	<5/<5	<1/<1	18±2/19±2	14±2/15±2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
15/11	<5/<5	<1/<1	11±1/2±1	8±1/7±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
13/12	<5/<5	<1/<1	5±1/<2	11±1/10±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
2005		•	-			*	•	•		
17/01	<5/<5	<1/<1	14±2/13±2	4±1/4±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
14\$02	<5/<5	<1/<1	42±4/26±3	13±2/10±2	<1/<1	<1/<1	<10/<10	14±2/6±1	<5/8±1	4±1/<2
15/03	<5/<5	<1/<1	14±2/13±2	4±1/3±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
11/04	<5/<5	<1/<1	9±1/10±1	9±1/8±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
02/05	<5/<5	<1/<1	22±3/4±1	3±1/<2	<1/<1	<1/<1	<10/<10	9±2/18±2	<5/<5	<2/<2
14/06	<5/<5	<1/<1	7±1/13±2	7±1/8±1	<1/<1	<1<1	<10<10	<5/<5	<5<5	<2<2
2006		•					•	-		
09/01	<5/<5	<1/<5	65±6/77±7	59±5/64±5	<1/<1	<1/<1	<10/<10	26±2/29±2	<5/<5	<5/<5
20/02	<5/<5	<1/<1	39±3/33±3	216±3/25±2	<1/<1	<1/<1	<10/<10	13±1/9±1	12±1/10±1	<5/<5
13/03	<5/<5	<1/<1	8±1/7±1	6±1/7±1	<1/<1	<1/<1	<10/<10	5±1/6±1	<5/<5	<5/<5
17/04	<5/<5	<1/<1	3±0,5/4±0,6	3±0,5/4±0,5	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<5/<5
08/05	<5/<5	<1/<1	6±0,8/11±1	<2/<2	<1/<1	<1/<1	<10/<10	6±/<5	<5/<5	<5/<5
12/06	<5/<5	<1/<1	23±3/8±0,8	<2/<2	<1/<1	<1/<1	<10/<10	10±1/10±1	<5/<5	<5/<5
10/07	<5/<5	<1/<1	19±3/9±0,8	<2/<2	<1/<1	<1/<1	<10/<10	7±0,8/8±0,9	<5/<5	<5/<5
07/08	<5/<5	<1/<1	18±2/19±3	<2/<2	<1/<1	<1<1	<10/<10	<5/<5	<5/<5	<5/<5
11/09	<5/<5	<1/<1	3±1/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<5/<5
09/10	<5/<5	<1/<1	21±2/21±2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<5/<5
13/11	<5/<5	<1/<5	14±1/17±2	20±2/22±2	<1/<1	<1/<1	<10/<10	6±1/6±1	<5/<5	<5/<5
11/12	<5/<5	<1/<1	<2/4±1	7±1/9±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/5	<5/<5

Tabla I.6 (continuación)

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2007										
08/01	<5/<5	<1/<1	16±2/16±2	16±2/9±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
12/02	<5/<5	<1/<1	17±/10±1	8±1/8±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
12/03	<5/<5	<1/<1	24±2/22±2	16±2/15±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
09/04	<5/<5	<1/<1	<2/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
07/05	<5/<5	<1/<1	<2/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
11/06	<5/<5	<1/<1	10±2/18±3	<2/6±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
09/07	<5/<5	<1/<1	11±2/11±2	<2/2±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
06/08	<5/<5	<1/<1	12±2/9±2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
10/09	<5/<5	<1/<1	7±1/5±1	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
15/10	<5/<5	<1/<1	5±1/4±1	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<<5/<5	<2/<2
12/11	<5/<5	<1/<1	18±2/5±1	9±1/5±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
10/12	<5/<5	<1/<1	31±3/<2	5±1/5±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
2008										
07/01	<5/<1	<1/<1	28±3/21±2	7±1/6±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
11/02	<5/<5	<1/<1	27±2/16±2	12±1/15±1	<1/<1	<1/<1	<10/<10	6±1/6±1	<5/<5	<2/6±1
10/03	<5/<5	<1/1,2±0,1	49±4/65±6	15±2/19±2	<1/1,7±0,2	<1/<1	<10/<10	7±1/13±2	<5/11±2	<2/<2
14/04	<5/<5	<1/<1	<2/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
12/05	<5/<5	<1/<1	24±2/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
09/06	<5/<5	<1/<1	5±1/<2	8±1/8±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
07/07	<5/<5	<1/<1	<2/5±1	<2/2±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
04/08	<5/<5	<1/<1	8±1/2±1	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
08/09	<5/<5	<1/<1	98±5/59±4	2±1/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
30/09	6±1/<5	<1/<1	<2/<2	8±1/8±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
10/11	<5/<5	<1/<1	5±1/<2	18±2/13±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
08/12	<5/<5	<1/<1	6±1/6±1	19±2/19±2	<1/<1	<1/<1	<10/<10	10±1/8±1	<5/<5	<2/<2
2009										
05/01	<5/<5	<1/<1	3±1/2±1	9±1/9±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
02/02	<5<05	<1/<1	3±1/6±1	4±1/5±1	<1/<1	<1/<1/	<10/<10	<5/<5	<5/<5	<2/<2
09/03	<5/<5	<1/<1	6±1/9±1	<2/2±1	10±0,3/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
13/04	<5/<5	<1/<1	<2/<2	<2/<2	<1/<1/	<1/<1/	<10/<10/	<5/<5	<5//<5	<2/<2
04/05	<5/<5	<1/<1	7±1/11±1	<2/<2	<1/<1	<1/<1	<10/<10	<5//<5	<5/<5	<2/<2
02/06	<5/<5	<1/<1	<2/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
06/07	<5/<5	<1/<1	<2/<2	12±2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
03/08	<5/<5	<1/<1	<2/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
31/08	<5/<5	<1/<1	3±1/4±1	4±1/4±	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
29/09	<5/<5	<1/<1	4±1/3±1	3±1/3±1	<1/<1/	<1/<1	<10/<10/	<5/<5	<5/<5	<2/<2
02/11	<5/<5	<1/<1	61±4/71±6	38±4/37±4	8±1/8±1	<1/<1	<10/<10	22±2/21±2	13±2/13±2	<2/<2
14/12	<5/<5	<1/<1	14±2/12±2	15±2/13±2	7±1/7±1	<1/<1	<10/<10	8±17±1	6±1/6±1	

Tabla I.6 (continuación)

Año					Metal/metal	oide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2010										•
11/01	<5/<5	<1/<1	18±2/23±2	12±1/11±1	<1/<1	<1/<1	<10/<10	17±2/17±2	<5/<5	<2/<2
08/02	<5/<5	<1/<1	15±2/15±2	4±1/5±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
08/03	<5/<5	<1<1/	3±1/6±1	5±1/4±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
05/04	<5/<5	<1/<1	3±1/3±1	3±1/4±1	<1/<1	<1/<1	<1/<10	<5/<5	<5/<5	<2/<2
10/05	<5/<5	<1/<1	<2/<2	3±1/3±	2,5±0,2/2,1±0,2	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
07/06	<5/<5	<1/<1	2±1/<2	2±1/2±1	<1/<1	<1/<1	<10/<10	8±1/7±1	<5/<5	<2/<2
05/07	<5/<5	<1/<1	3±1/3±1	<2/2±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
02/08	<5/<5	<1/<1	3±1/<2	2±1/2±1	4±1/3±1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
06/09	<5/<5	<1/<1	4±1/3±1	2±1/3±1	5±1/5±1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
04/10	<5/<5	<1/<1	18±1/6±1	5±1/5±1	3±1/2±1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
15/11	<5/<5	<1/<1	2±1/<2	4±1/4±1	5±1/5±1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
06/12	<5/<5	<1/<1	<2/<2	3±1/3±1	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2

Tabla I.6. (continuación)

Año					ſ	Metal/metaloide	(μg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011											
03/01	5±1/<5	<1/<1	24±1/18±1	12±1/2±1	<1/<1	<1/<1	<10/<10	10±1/<5	10±1/<5	<2/<2	1,9±0,2/19±0,2
02/02	4±1/4±1	<0,5/<0,5	10±1/10±1	7±1/7±1	<1/<1	<1/<1	2±1/2±1	6±1/6±1	5±1/5±1	<2/<2	0,7±0,1/0,7±0,1
01/03	4±1/4±1	<0,5/<0,5	11±1/8±1	7±1/7±1	<1/<1	<1/<1	2±1/2±1	8±1/8±1	3±1/3±1	<2/<2	1,3±0,3/1,3±0,3
04/04	2±1/2±1	<0,5/<0,5	2±1/8±1	3±1/2±1	<1/<1	<1/<1	2±1/2±1	3±1/3±1	<1/<1	<2/<2	0,6±0,1/0,6±0,1
04/05	5±1/5±1	<0,5/<0,5	3±1/3±1	5±1/5±1	<1/<1	<1/<1	2±1/2±1	3±1/3±1	1/1	<2/<2	0,7±0,1/0,7±0,1
-	-	-	-	-	-	-	-	-	-	-	-
05/07	5±1/5±1	<0,5/<0,5	16±1/10±1	15±1/11±1	<1/<1	<1/<1	2±1/3±1	9±1/7±1	5±1/<1	<2/<2	1±0,1/1±0,1
02/08	2±1/2±1	<0,5/<0,5	7±1/7±1	2±1/2±1	<1/<1	<1/<1	2±1/2±1	3±1/3±1	<1/<1	<2/<2	0,5±0,1/0,5±0,1
06/09	2±1/2±1	<0,5/<0,5	<2/<2	2±1/2±1	<1/<1	<1/<1	2±1/2±1	4±1/4±1	<1/<1	<2/<2	0,6±0,1/0,6±0,1
04/10	2±1/2±1	<0,5/<0,5	5±1/5±1	6±1/6±1	<1/<1	1/<1	2±1/2±1	3±1/3±1	3±1/3±1	<2/<2	0,7±0,1/0,7±0,1
25/10	5±1/5±1	<0,5/<0,5	19±1/57±4	22±1/20±1	<1/<1	<1/<1	2±1/2±1	3±1/3±1	3±1/3±1	<2/<2	0,7±0,1/0,7±0,1
12/12	3±1/2±1	<0,5/<0,5	12±1/9±1	11±1/9±1	2±1/2±1	<1/<1	<2/<2	5±1/3±1	6±1/4±1	<2/<2	0,7±0,1/<0,5
2012											
03/01	9±1/9±1	<0,5/<0,5	37±2/36±2	15±1/15±1	1±0,5/1±0,5	<1/<1	<2/<2	10±1/10±1	19±1/19±1	<2/<2	0,6±0,1/0,6±0,1
30/01	<2/2±1	<0,5/<0,5	<2/<2	<2/<2	<1/<1	<1/<1	<2/4±1	<2/3±1	<1/±0,5	<2/<2	<0,5/0,8±0,1
05/03	2±1/2±1	<0,5/<0,5	5±1/7±1	4±1/4±1	<1/<1	<1/<1	2±1/2±1	3±1/4±1	1±0,5/2±1	<2/<2	0,6±0,1/0,6±0,1
09/04	2±1/2±1	<0,5/<0,5	18±/37±3	3±1/4±1	<1/<1	<1/<1	2±1/2±1	3±1/4±1	1±0,5/2±1	<2/<2	0,6±0,170,6±0,1
14/05	2±1/2±1	<0,5/<0,5	3±1/13±1	3±1/3±1	<1/<1	<1/<1	2±1/2±1	3±1/3±1	1±0,5/2±1	<2/<2	0,6±0,1/0,6±0,1
04/06	3±1/3±1	<0,5/<0,5	15±2/6±1	9±1/7±1	<1/<1	<1/<1	2±1/2±1	6±1/5±1	4±0,5/3±1	<2/<2	0,8±0,1/0,8±0,1
02/07	2±1/2±1	<0,5/<0,5	10±1/9±1	4±1/4±1	<1/<1	<1/<1	<2/<2	3±1/4±1	4,0±0,5/2,0±0,4	<2/<2	0,6±1/0,7±0,1
06/08	2±1/2±1	<0,5/<0,5	2±1/3±1	3±1/3±1	<1/<1	<1/<1	2±1/2±1	3±1/4±1	1±0,5/1±0,5	<2/<2	0,6±0,1/0,6±0,1
03/09	2±1/2±1	<0,5/<0,5	<2/<2	3±1/3±1	<1/<1	<1/<1	2±1/2±1	4±1/3±1	<1/<1	<2/<2	0,6±0,1/0,6±0,1
02/10	2±1/2±1	<0,5/<0,5	5±1/4±1	6±1/6±1	<1/<1	<1/<1	<2/2±1	4±1/4±1	2±1/2±1	<2/<2	0,5±0,1/0,5±0,1
05/11	3±1/3±1	<0,5/<0,5	8±1/9±1	9±1/9±1	<1/<1	<1/<1	<2/<2	6±1/6±1	3±1/3±1	<2/<2	0,6±0,1/0,6±0,1
03/12	3±1/3±1	<0,5/<0,5	7±1/7±1	8±1/7±1	<1/<1	<1/<1	<2/<2	6±1/6±1	3±1/3±1	<2/<2	0,6±0,1/0,7±0,1

Tabla I.7. Estación: CL 6

Latitud: S 38º 13'14.8"

Longitud: O 67º 11' 18.8"

Descripción: descarga embalse Casa de Piedra

Descripcion, u	escarga embais	e Casa de Pledra	a							
A ~ -					Metal/meta	loide (µg/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2000	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD	MI MD
15/02	<10 <10	<1,5 <1,5	<20 <20	<4 <4	2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
14/03	<10 <10	<1,5 <1,5	<20 <20	<4 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
16/05	- <10	- <1,5	- <20	- <4	- <2	- <1	- <10	- <10	- <7	- <2
08/08	<10 <10	<1,5 <1.5	<20 <20	<4 <4	<2 <2	<1 <1	<10 <10	<10 <10	<7 <7	<2 <2
26/09	- <10	- <1,5	- 26	- <4	- <2	- <1	- <10	- <10	- <7	- <2
07/11		- <1,5	- <20	- <4	- <2	- <1	- <10	- <10	- <7	- <2
2001	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
13/02	<5	<1	11	<2	<1	<1	<10	<5	<5	<2
24/04	<5	<1	<10	<2	<1	<1	<10	<5	<5	<2
26/06	<5	<1	11	<2	<1	<1	<10	<5	<5	<2
14/08	<5	<1	12	<2	<1	<1	<10	<5	<5	3
30/10	<5	<1	9	<2	<1	<1	<10	<5	<5	5
04/12	<5	<1	8	<2	<1	<1	<10	<5	<5	<2
2002	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
19/03	<5	<1	<2	<2	<1	<1	<10	<5	<5	4
07/05	<5	<1	4	<2	<1	<1	<10	<5	<5	<2
25/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
13/08	<5	<1	5	<2	<1	<1	<10	<5	<5	<2
08/10	<5	<1	29	2	<1	<1	<10	<5	<5	<2
26/11	<5	<1	29	3	<1	<1	<10	7	<5	5
2003	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
29/04	<5	<1	14	<2	<1	<1	<10	<5	<5	<2
10/06	<5	<1	10	<2	<1	<1	<10	<5	<5	3
12/08	<5	<1	24	<2	<1	<1	<10	<5	<5	<2
23/09	<5	<1	26	<2	<1	<1	<10	<5	<5	<2
18/11	<5	<1	<2	2	<1	<1	<10	<5	<5	<2

Tabla I.7 (continuación)

Tabla 1.7 (COII	,				Metal/meta	loide (µg/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2004					-		•			
06/07	<5	<1	9±1	<2	<1	<1	<10	<5	<5	3±1
17/08	<5	<1	12±1	<2	<1	<1	<10	<5	<5	<2
14/09	<5	<1	15±2	<2	<1	<1	<10	<5	<5	<2
12/10	<5	<1	29±3	<2	<1	<1	<10	<5	<5	<2
16/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
14/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2005				•	•	•	•		•	
18/01	<5	<1	10±1	<2	<1	<1	<10	<5	<5	<2
15/02	<5	<1	6±1	<2	<1	<1	<10	<5	<5	<2
15/03	<5	<1	11±1	<2	<1	<1	<10	<5	<5	<2
12/04	<5	<1	15±1	3±1	<1	<1	<10	9±1	<5	<2
03/05	<5	<1	4±1	2±1	<1	<1	<10	14±2	<5	<2
14/06	<5	<1	10±2	<2	<1	<1	<10	<5	<5	<2
2006										
10/01	<5	3,7±0,3	8±1	10±1	<1	<1	<10	<5	<5	<2
21/02	<5	<1	5±1	3±0,6	<1	<1	<10	7±1	<5	<2
14/03	<5	<1	5±1	3±0,6	<1	<1	<10	7±1	<5	<2
18/04	<5	<1	<2	3±0,5	<1	<1	<10	<5	<5	<2
09/05	<5	<1	4±0,4	<2	<1	<1	<10	<5	<5	<2
13/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
08/08	<5	<1	15±3	<2	<1	<1	<10	<5	<5	<2
12/09	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
10/10	<5	<1	38±4	<2	<1	<1	<10	<5	<5	<2
14/11	<5	3,7±0,3	<2	<2	<1	<1	<10	<5	<5	<2
12/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2

Tabla I.7 (continuación)

Año	illidacion)				Metal/meta	ıloide (μg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2007										
09/01	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
13/02	<5	<1	5±1	<2	<1	<1	<10	<5	<5	<2
13/03	<5	<1	<2	8±1	<1	<1	<10	<5	<5	<2
10/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
08/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
12/06	<5	<1	13±3	<2	<1	<1	<10	<5	<5	<2
10/07	<5	<1	8±1	<2	<1	<1	<10	<5	<5	<2
07/08	<5	<1	7±1	<2	<1	<1	<10	<5	<5	<2
11/09	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
16/10	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
13/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2008										
08/01	<5	<1	3±1	<2	<1	<1	<10	<5	<5	<2
12/02	<5	<1	10±1	<2	<1	<1	<10	<5	<5	<2
11/03	<5	<1	7±	<2	<1	<1	<10	<5	<5	<2
15/04	<5	<1	43±3	<2	<1	<1	<10	<5	<5	<2
13/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
10/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
08/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
05/08	<5	<1	16±1	<2	<1	<1	<10	<5	<5	<2
09/09	<5	<1	73±4	<2	<1	<1	<10	<5	<5	<2
01/10	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
09/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2

Tabla I.7 (continuación)

Año		Metal/metaloide (μg/L)													
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio					
2009															
06/01	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
03/02	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
10/03	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
14/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
05/05	<5	<1	5±1	<2	<1	<1	<10	<5	<5	<2					
03/06	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
07/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
04/08	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
01/09	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
30/09	<5	<1	5±1	<2	<1	<1	<10	<5	<5	<2					
03/11	<5	<1	15±2	<2	3±1	<1	<10	<5	<5	<2					
15/12	<5	<1	<2	<2	5±1	<1	<10	<5	<5	<2					
2010															
12/01	<5	<1	4±1	<2	<1	<1	<10	<5	<5	<2					
09/02	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
09/03	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2					
06/04	<5	<1	<2	2±1	<1	<1	<10	<5	<5	<2					
11/05	<5	<1	3±1	<2	2,4±0,2	<1	<10	<5	<5	<2					
08/06	<5	<1	<2	<2	<1	<1	<10	6±1	<5	<2					
06/07	<5	<1	9±1	<2	<1	<1	<10	<5	<5	<2					
03/08	<5	<1	<2	<2	4±1	<1	<10	<5	<5	<2					
07/09	<5	<1	2±1	<2	3±1	<1	<10	<5	<5	<2					
05/10	<5	<1	<2	<2	2±1	<1	<10	<5	<5	2					
16/11	<5	<1	<2	<2	<2	<1	<10	<5	<5	<2					
07/12	<5	<1	3±1	<2	<1	<1	<10	<5	<5	<2					

Tabla 1.7 (continuación)

Año					Me	etal/metaloide (μ	g/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011						•			•	•	
04/01	<5	<1	7±1	<2	<1	<1	<10	<5	<5	<2	0,6±0,1
02/02	<2	<0,5	<2	2±1	<1	<1	3±1	3±1	<1	<2	0,6±0,1
02/03	2±1	<0,5	<2	2±1	<1	<1	3±1	3±1	<1	<2	0,7±0.1
05/04	2±1	<0,5	19±1	2±1	<1	<1	2±1	2±1	<1	<2	0,7±0,1
04/05	3±1	<0,5	2±1	3±1	<1	<1	3±1	3±1	<1	<2	0,7±0,1
07/06	2±1	<0,5	2±1	2±1	<1	<1	3±1	3±1	<1	<2	0,7±0,1
05/07	2±1	<0,5	<2	2±1	<1	<1	3±1	3±1	<1	<2	0,7±0,1
02/08	2±1	<0,5	<2	<2	<1	<1	4±1	3±1	<1	<2	0,7±0,1
06/09	2±1	<0,5	<2	<2	<1	<1	3±1	4±1	<1	<2	0,7±0,1
04/10	2±1	<0,5	<2	<2	<1	<1	3±1	2±1	<1	<2	0,7±0,1
25/10	2±1	<0,5	<2	<2	<1	<1	3±1	2±1	<1	<2	0,7±0,1
12/12	2±1	<0,5	<2	<2	2±1	<1	3±1	2±1	<1	<2	0,8±0,1
2012											
03/01	2±1	<0,5	12±1	<2	<1	<1	4±1	3±1	1±0,5	<2	0,7±0,1
30/01	2±1	<0,5	<2	<2	<1	<1	4±1	3±1	2±1	<2	0,7±0,1
05/03	<2	<0,5	<2	<2	<1	<1	4±1	3±1	2±1	<2	0,8±0,1
09/04	2±1	<0,5	10±1	2±1	<1	<1	4±1	3±1	<1	<2	0,8±0,1
14/05	2±1	<0,5	5±1	2±1	<1	<1	4±1	4±1	<1	<2	0,9±0,1
04/06	2±1	<0,5	3±1	2±1	<1	<1	4±1	4±1	<1	<2	0,9±0,1
02/07	2±1	<0,5	3±1	2±1	<1	<1	4±1	3±1	1,0±0,4	<2	0,9±0,1
06/08	2±1	<0,5	<2	2±1	<1	<1	4±1	4±1	<1	<2	0,9±0,1
03/09	2±1	<0,5	5±1	2±1	<1	<1	4±1	4±1	<1	<2	0,9±0,1
01/10	2±1	<0,5	<2	2±1	<1	<1	4±1	4±1	<1	<2	0,8±0,1
05/11	2±1	<0,5	<2	3±1	<1	<1	3±1	4±1	<1	<2	0,8±0,1
03/12	2±1	<0,5	<2	<2	<1	<1	3±1	4±1	<1	<2	<0,5

Tabla I.8. Estación: CL 7 Latitud: S 38° 59' 10.92" Longitud: O 64° 05' 34.89""

Tabla I.8. Estación: CL 7 Descripción: río Colorado altura La Adela

					Metal/meta	ıloide (μg/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2000	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
16/02	<10	<1,5	<20	<4	<2	<1	<10	<10	<7	<2
15/03	<10	<1,5	<20	<4	<2	<1	<10	<10	<7	<2
17/05	<10	<1,5	<20	<4	<2	<1	<10	<10	<7	<2
09/08	<10	<1,5	21	<4	<2	<1	<10	<10	<7	<2
27/09	<10	<1,5	24	<4	<2	<1	<10	<10	<7	<2
08/11	<10	<1,5	<20	<4	<2	<1	<10	<10	<7	<2
2001	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
14/02	<5	<1	11	<2	<1	<1	<10	<5	<5	<2
25/04	<5	<1	<10	<2	<1	<1	<10	<5	<5	<2
27/06	<5	<1	12	<2	<1	<1	<10	<5	<5	5
16/08 ⁽¹⁾	<5/<5	<1	14/13	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	7/2
31/10 ⁽²⁾	<5/<5/<5	<1/<1/<1	10/10/10	<2/<2/<2	<1/<1/<1	<1/<1/<1	<10/<10/<10	<5/<5/<5	<5/<5/<5	5/4/<2
03/12	<5	<1	9	2	<1	<1	<10	<5	<5	6
2002	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
19/03 ⁽¹⁾	<5/<5	<1/<1	<2/<2	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	3/4
07/05 ⁽¹⁾	<5/<5	<1/<1	16/15	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	3/<2
25/06 ⁽¹⁾	<5/<5	<1/<1	8/5	<2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	<2/<2
13/08 ⁽¹⁾	<5/<5	<1/<1	6/4	2/<2	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	5/<2
08/10 ⁽¹⁾	<5/<5	<1/<1	30/31	2/5	<1/<1	<1/<1	<10/<10	<5/<5	<5/<5	2/<2
26/11	<5	<1	32	4	<1	<1	<10	6	<5	<2
2003	MD	MD	MD	MD	MD	MD	MD	MD	MD	MD
30/04	<5	<1	15	<2	<1	<1	<10	<5	<5	3
11/06	<5	<1	10	<2	<1	<1	<10	<5	<5	<2
13/08	<5	<1	24	<2	<1	<1	<10	<5	<5	<2
24/09	<5	<1	26	<2	<1	<1	<10	<5	<5	<2
19/11	<5	<1	<2	3	<1	<1	<10	<5	<5	<2

MD: margen derecha – (1) muestra duplicada – (2) muestra triplicada

Tabla I.8 (continuación)

A ~ -					Metal/meta	loide (μg/L)				
Año	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2004										
07/07	<5	<1	10±1	<2	<1	<1	<10	<5	<5	<2
18/08	<5	<1	12±1	<2	<1	<1	<10	<5	<5	<2
15/09	<5	<1	16±1	<2	<1	<1	<10	<5	<5	<2
13/10	<5	<1	29±3	<2	<1	<1	<10	<5	<5	<2
17/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
15/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2005										
19/01	<5	<1	11±1	<2	<1	<1	<10	<5	<5	<2
16/02	<5	<1	6±1	<2	<1	<1	<10	<5	<5	<2
16/03	<5	<1	10±1	<2	<1	<1	<10	<5	<5	<2
13/04	<5	<1	12±2	2±1	<1	<1	<10	<5	<5	<2
04/05	<5	<1	4±1	3±1	<1	<1	<10	24±3	<5	2±1
15/06	<5	<1	4±1	<2	<1	<1	<10	<5	<5	<2
2006										
11/01	<5	<1	5±1	12±1	<1	<1	<10	<5	<5	<2
22/02	<5	<1	8±1	6±1	<1	<1	<10	<5	<5	<2
15/03	<5	<1	6±1	4±1	<1	<1	<10	<5	<5	<2
19/04	<5	<1	9±1	4±1	<1	<1	<10	<5	<5	<2
10/05	<5	<1	4±0,4	<2	<1	<1	<10	<5	<5	<2
14/06	<5	<1	3±0,3	<2	<1	<1	<10	<5	<5	<2
11/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
08/08	<5	<1	16±3	<2	<1	<1	<10	<5	<5	<2
12/09	<5	<1	16±3	<2	<1	<1	<10	<5	<5	<2
10/10	<5	<1	21±2	<2	<1	<1	<10	<5	<5	<2
14/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
12/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2

Tabla I.9 Estación: CL 8 Latitud: S 39º 03' 04.52" Descripción: río Colorado altura Colonia Juliá y Echarren

Año					Metal/meta	loide (µg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2007					-					
10/01	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
13/02	<5	<1	12±1	<2	<1	<1	<10	<5	<5	<2
13/03	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
10/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
08/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
13/06	<5	<1	11±2	<2	<1	<1	<10	<5	<5	<2
11/07	<5	<1	9±2	<2	<1	<1	<10	<5	<5	<2
07/08	<5	<1	5±2	<2	<1	<1	<10	<5	<5	<2
11/09	<5	<1	8±1	3±1	<1	<1	<10	<5	<5	<2
16/10	<5	<1	6±1	<2	<1	<1	<10	<5	<5	<2
13/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
2008										
08/01	<5	<1	7±1	<2	<1	<1	<10	<5	<5	<2
12/02	<5	<1	11±1	4±1	<1	<1	<10	<5	<5	<2
11/03	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
15/04	<5	<1	56±4	3±1	<1	<1	<10	<5	<5	<2
13/05	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
10/06	<5	<1	25±2	<2	<1	<1	<10	<5	<5	<2
08/07	<5	<1	25±2	<2	<1	<1	<10	<5	<5	<2
05/08	<5	<1	23±2	<2	<1	<1	<10	<5	<5	<2
10/09	<5	<1	9±1	<2	<1	<1	<10	<5	<5	<2
01/10	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
12/11	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
09/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2

Longitud: O 63º 57' 37.73"

Tabla I.9. (continuación)

Año					Metal/meta	ıloide (μg/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio
2009										
07/01	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
03/02	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
03/09	-	-	-	-	-	-	-	-	-	-
15/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
06/05	<5	<1	24±2	<2	<1	<1	<10	<5	<5	<2
03/06	<5	<1	29±2	<2	<1	<1	<10	<5	<5	<2
08/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
04/08	<5	<1	6±1	<2	<1	<1	<10	<5	<5	<2
02/09	<5	<1	2±1	<2	<1	<1	<10	<5	<5	<2
30/09	<5	<1	<2	2±1	<1	<1	<10	<5	<5	<2
04/11	<5	<1	2±1	3±1	5±1	<1	<10	<5	<5	<2
15/12	<5	<1	2±1	3±1	5±1	<1	<10	<5	<5	<2
2010										
13/01	<5	<1	12±1	<2	<1	<1	<10	<5	<5	<2
09/02	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
16/03	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
06/04	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
11/05	<5	<1	3±1	<2	2,7±0,2	<1	<10	<5	<5	<2
08/06	<5	<1	<2	<2	<1	<1	<10	6±1	<5	<2
07/07	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2
03/08	<5	<1	9±2	<2	3±1	<1	<10	<5	<5	<2
08/09	<5	<1	2±1	<2	4±1	<1	<10	<5	<5	<2
05/10	<5	<1	4±1	<2	2±1	<1	<10	<5	<5	<2
17/11	<5	<1	<2	<2	<2	<1	<10	<5	<5	<2
07/12	<5	<1	<2	<2	<1	<1	<10	<5	<5	<2

Tabla I.9. (continuación)

Año					Me	etal/metaloide (μ	g/L)				
	Arsénico	Cadmio	Cinc	Cobre	Cromo	Mercurio	Molibdeno	Níquel	Plomo	Selenio	Uranio
2011						•				•	•
04/01	<5	<1	16±1	2±1	<1	<1	<10	<5	<5	<2	0,7±0,1
02/02	2±1	<0,5	<2	2±1	<1	<1	3±1	3±1	<1	<2	0,7±0,1
02/03	2±1	<0,5	<2	2±1	<1	<1	3±1	3±1	<1	<2	0,8±0,1
06/04	2±1	<0,5	4±1	2±1	<1	<1	2±1	2±1	<1	<2	0,7±0,1
04/05	3±1	<0,5	2±1	3±1	<1	<1	3±1	3±1	<1	<2	0,7±0,1
09/06	2±1	<0,5	16±1	2±1	<1	<1	3±1	4±1	<1	<2	0,8±0,1
06/07	2±1	<0,5	14±1	3±1	<1	<1	<2	4±1	<1	<2	0,9±0,1
03/08	2±1	<0,5	2±1	2±1	2±1	<1	4±1	3±1	<1	<2	0,7±0,1
07/09	2±1	<0,5	<2	<2	<1	<1	4±1	4±1	<1	<2	0,8±0,1
05/10	<2	<0,5	<2	<2	<1	<1	4±1	2±1	<1	<2	0,9±0,1
26/10	2±1	<0,5	<2	<2	<1	<1	4±1	2±1	<1	<2	0,9±0,1
13/12	2±1	<0,5	<2	<2	1±0,5	<1	3±1	2±1	<1	<2	1,0±0,1
2012											
04/01	2±1	<0,5	8±1	2±1	<1	<1	4±1	4±1	2±1	<2	0,8±0,1
31/01	2±1	<0,5	<2	2±1	<1	<1	4±1	3±1	2±1	<2	0,8±0,1
06/03	<2	<0,5	<2	<2	<1	<1	4±1	3±1	<1	<2	0,8±0,1
10/04	2±1	<0,5	6±1	2±1	<1	<1	4±1	3±1	<1	<2	0,9±0,1
15/05	2±1	<0,5	8±1	3±1	<1	<1	5±1	4±1	<1	<2	1±0,5
06/06	2±1	<0,5	10±1	3±1	<1	<1	5±1	4±1	<1	<2	1±0,5
03/07	2±1	<0,5	3±1	2±1	<1	<1	4±1	3±1	1,0±0,5	<2	1,0±0,1
08/08	2±1	<0,5	3±1	2±1	1±0,5	<1	4±1	7±1	1±0,5	<2	1±0,5
04/09	2±1	<0,5	<2	2±1	<1	<1	4±1	4±1	<1	<2	0,9±0,1
02/10	2±1	<0,5	<2	3±1	<1	<1	4±1	5±1	<1	<2	0,9±0,5
06/11	3±1	<0,5	3±1	3±1	<1	<1	4±1	4±1	<1	<2	0,9±0,5
04/12	2±1	<0,5	2±1	2±1	<1	<1	3±1	4±1	<1	<2	<0,5

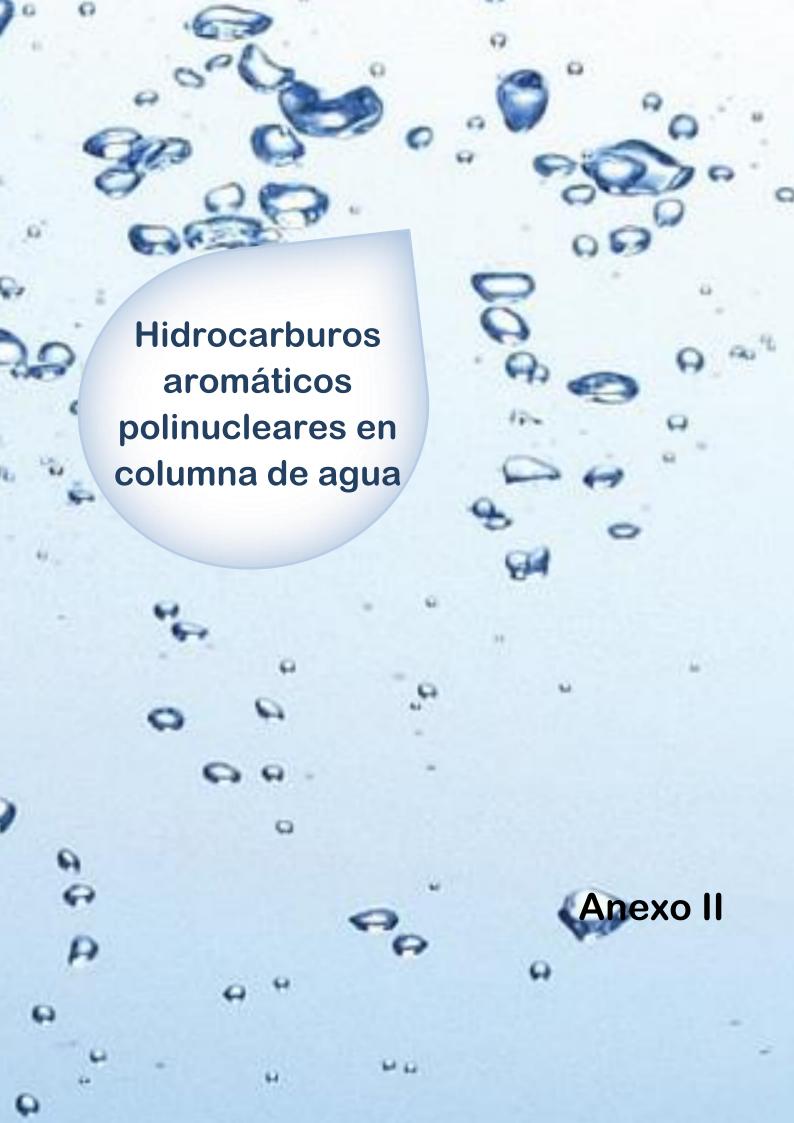


Tabla II.1 Estación: CL 0 Latitud: S 36° 49' 02.3" Longitud: O 69° 52' 16.4"

Descripción: río Barrancas altura puente Ruta Nacional Nº 40 – Margen derecha Hidrocarburos aromáticos polinucleares (µg/L) Año Dimetil Metil Dimetil Naftaleno Acenaftileno Fluoreno Metil naftaleno Acenafteno Fenantreno Antraceno naftaleno fenantreno fenantreno 2000 ---2001 _ _ _ 2002 18/03 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 06/05 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 24/06 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 12/08 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0.005 07/10 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 25/11 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 2003 28/04 <0,005 <0,020 <0,020 <0,010 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 09/06 <0,010 <0,005 <0,005 <0,005 <0,005 <0,020 <0,020 <0,020 <0,005 <0,010 <0,010 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0.020 11/08 <0,005 <0,005 22/09 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 17/11 <0,010 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 <0,005 <0,005

Tabla II.1 (continuación)

Tabla II.1 (cont	inuacion)	Hidrocarburos aromáticos polinucleares (μg/L)											
A = -				Tilu	locarburos aroma	licos politiudicare	(1 5)	D: (1)	B.A. (1)	D: (1)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno			
2004													
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
16/08	0,017	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/10	0,016	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,023	0,042	0,046			
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
2005													
17/01	0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
14/02	0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
14/03	0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/04	0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,290	<0,020			
02/05	0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/06	0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
2006													
09/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
20/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,0250			
17/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
08/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
12/06	<0,020	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
10/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	0,023			
07/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
09/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			

Tabla II.1 (continuación)

				Hie	drocarburos aromá	áticos polinuclear	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2007										
08/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2008										
07/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
30/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2009										
05/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
29/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.1 (continuación)

Tabla II. I (COI				Hid	drocarburos aromá	ticos polinuclear	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2010										
11/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2011		-								
03/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
24/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2012										
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.1 (continuación)

				Hi	drocarburos arom	áticos polinuclear	es (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000										
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
2001										
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
2002										
18/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
06/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
24/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
07/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,013	0,012	
25/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2003										
28/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
11/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
22/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,013	<0,005	
17/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,012	<0,005	

Benzo[b+k]fluoranteno: suma de los isómeros Benzo[b]fluoranteno y Benzo[k]fluoranteno no resueltos

Tabla II.1. (continuación)

Tabla II. I. (CO		Hidrocarburos aromáticos polinucleares (μg/L)											
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno			
2004													
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
16/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
2005													
17/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
14/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
14/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
02/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
2006													
09/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
20/02	<0,005	<0,005	<0,005	<0,005	<0,05	<0,005	<0,005	<0,005	<0,005	<0,005			
13/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
17/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
12/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
10/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
07/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
09/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,,005	<0,005	<0,005			

Tabla II.1. (continuación)

rabia ii. ii.	Continuacion)			Hi	drocarburos aron	náticos polinuclea	res (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2007										
08/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2008										
07/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
30/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2009										
05/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
31/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
29/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.1. (continuación)

				Н	idrocarburos aror	náticos polinuclea	res (ua/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2010							F.1.5.1.5			p
11/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005	<0,005	<0.005	<0.005	<0.005
08/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005	<0,005	<0,005
05/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2011										
03/01	<0.005	<0,005	<0.005	<0,005	<0.005	<0.005	<0.005	<0.005	<0,005	<0.005
01/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
24/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2012										
04/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
31/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II. 2 Estación: CL 1 Latitud: S 35º 52' 15.4" Longitud: O 69º 50' 14.0" Descripción: río Grande altura Bardas Blancas – Margen derecha

Descripcion: 11	o Granac anara	Hidrocarburos aromáticos polinucleares (µg/L) Matil Dimetil Matil Dimetil Dimetil										
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fluoreno Fenantreno A		Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno		
2000		-			-							
14/02	<0,010	<0,010	<0,010	<0,010	0,13	30 (*)	<0,010	<0,010	<0,010	<0,010		
13/03	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010		
15/05	<0,010	<0,010	<0,010	<0,010	0,01	16(*)	0,020	0,010	0,020	<0,010		
07/08	<0,010	<0,010	<0,010	<0,010	0,01	17(*)	<0,010	0,010	0,030	<0,010		
25/09	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010		
06/11	<0,010	<0,010	<0,010	<0,010	0,01	15(*)	<0,010	0,010	0,030	0,040		
					(*) Fenantren	o + antraceno						
2001												
12/02	<0,010	<0,010	<0,010	<0,010	0,020	<0,010	<0,020	<0,050	<0,050	<0,050		
23/04	-	<0,010	<0,010	<0,010	0,020	<0,010	<0,020	<0,050	<0,050	<0,050		
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
2002												
18/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
24/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
25/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2003												
28/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
11/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
22/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
17/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		

Tabla II.2 (continuación)

Tabla II.2 (CO	Titiridadiorij	Hidrocarburos aromáticos polinucleares (μg/L)											
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno			
2004													
05/07	<0,010	<0,005	<0,005	<0,005	0,033	<0,005	<0,010	<0,020	0,290	0,200			
16/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/09	0,011	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0.005	<0,010	<0,020	<0,020	<0,020			
2005													
17/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
14/02	0,016	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
14/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/04	0,026	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
02/05	0,024	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
2006								•	•				
09/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
20/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
17/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
08/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
12/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
10/07	0,011	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
07/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
09/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			

Tabla II.2 (continuación)

Tabla II.2 (Continua				Hid	rocarburos aromá	ticos polinucleare	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2007										
08/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2008		•								
07/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
30/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2009										
05/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
29/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.2 (continuación)

rabia ii.2 (c	oritinaacion)			Hie	drocarburos aromá	áticos polinuclear	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2010										
11/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2011										
03/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
-	-	-	-	-	-	-	-	-	-	-
05/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
24/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2012										
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.2 (continuación)

Tabla II.2 (COII				Hidrocarbu	ıros aromáticos poli	inucleares (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000						-		-	
14/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2001						-			
12/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
23/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2002									
18/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
24/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,028	0,020
25/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003									
28/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
22/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
17/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Benzo[b+k]fluoranteno: suma de los isómeros Benzo[b]fluoranteno y Benzo[k]fluoranteno no resueltos.

Tabla II.2 (continuación)

Tabla II.2 (CC		. Hidrocarburos aromáticos polinucleares (μg/L)											
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno			
2004			-										
05/07	<0,005	0,014	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
16/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/09	<0,005	<0,005	<0,m005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
2005													
17/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
14/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
14/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
02/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
2006													
09/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
20/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
17/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
12/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
10/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
07/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
09/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
13/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005			

Tabla II.2 (continuación)

Tabla II.2 (co	Titiridacion)	Hidrocarburos aromáticos polinucleares (µg/L)										
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno		
2007												
08/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
09/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
11/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
09/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
15/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2008												
07/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
11/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
14/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
08/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
30/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
08/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2009												
05/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
09/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
13/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
03/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
31/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
29/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		

Tabla II.2. (continuación)

<0,005 <0,005 <0,005 <0,005 <0,005 <0,005	<0,005 <0,005 <0,005	Benzo[b] fluoranteno <0,005	Benzo[k] fluoranteno	Criseno	náticos polinuclear Benzo[a]	Benzo[a]	Dibenzo[a,h]	Benzo[g,h,i]	Indeno[c,d]
<0,005 <0,005 <0,005	<0,005	<0,005	fluoranteno						
<0,005 <0,005 <0,005	<0,005				antraceno	pireno	antraceno	perileno	pireno
<0,005 <0,005 <0,005	<0,005		0.005	2.225	0.005	0.005	0.005	0.005	2.225
<0,005 <0,005		0.005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
< 0.005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
									<0,005
									<0,005
	<0,005						<0,005		<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
-	-	-	-	-	-	-	-	-	-
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005		<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		<0,005		<0,005
<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005		<0,005
							•		
<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0,005
	<0,005								<0,005
	,								<0,005
									<0,005
									<0,005
									<0,005
	The second secon								<0,005
									<0,005
									<0,005
	,							,	<0,005
									<0,005
									<0,005
	<0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	

Tabla II. 3. Estación: CL 2 Latitud: S 37° 07′ 48.7" Longitud: O 69° 38′ 40.2"

Descripción: río Colorado altura Buta Ranquil (Puente El Portón) – Margen derecha

Descripcion:	: rio Colorado altura Buta Ranquil (Puente El Porton) – Margen derecha Hidrocarburos aromáticos polinucleares (µg/L)										
				Hic	drocarburos aromá	ticos polinucleare	s (µg/L)				
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno	
2000											
14/02	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010	
13/03	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010	
15/05	<0,010	<0,010	<0,010	<0,010	0,01	6(*)	0,020	0,010	0,024	<0,010	
07/08	<0,010	<0,010	<0,010	<0,010	0,01	1(*)	<0,010	<0,010	0,011	<0,010	
25/09	<0,010	<0,010	<0,010	<0,010	<0,0	10 (*)	<0,010	<0,010	<0,010	<0,010	
06/11	<0,010	<0,010	<0,010	<0,010	0,01	3(*)	<0,010	<0,010	0,032	0,031	
2001											
12/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050	
23/04	<0,010	<0,010	<0,010	<0,010	0,010	<0,010	<0,020	<0,050	<0,050	<0,050	
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050	
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050	
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050	
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050	
2002					•			•			
18/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,014	<0,005	<0,005	
06/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
24/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
07/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
25/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2003											
28/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
11/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
22/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
17/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	

Tabla II.3 (continuación)

Tabla II.5 (COII		. Hidrocarburos aromáticos polinucleares (μg/L)											
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno			
2004													
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
16/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/09	0,014	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/12	0,042	<0,005	<0,005	<0,005	<0,005	<0,005	0,023	<0,020	<0,020	<0,020			
2005													
17/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
14/02	0,022	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	0,024	<0,020	<0,020			
14/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
02/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
2006													
09/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
20/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
17/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
08/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
12/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
10/07	0,021	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,.020	<0,020	<0,020			
07/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
11/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
09/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
13/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020			

Tabla II.3 (continuación)

14514 11.5 (661	,			Hie	drocarburos aromá	ticos polinucleare	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2007										
08/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2008										
07/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
30/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2009										
05/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
29/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.3 (continuación)

	Hidrocarburos aromáticos polinucleares (μg/L)										
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno	
2010											
11/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
08/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
08/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
05/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
10/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
2011											
03/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
01/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
01/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
04/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
03/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
01/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
25/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
2012											
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
31/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
06/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
10/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
15/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
03/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
04/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
02/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	
04/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020	

Tabla II.3 (continuación)

	lidaciony	Hidrocarburos aromáticos polinucleares (µg/L) Renzola Renzola Dihenzola hi Renzola hi												
Año	Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno					
2000														
14/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
13/03	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
15/05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
07/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
25/09	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
06/11	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
2001														
12/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
23/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,01					
2002														
18/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
06/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
24/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
07/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
25/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
2003								•						
28/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
11/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
22/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
17/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					

Benzo[b+k]fluoranteno: suma de los isómeros Benzo[b]fluoranteno y Benzo[k]fluoranteno no resueltos.

Tabla II.3. (continuación)

(0	Hidrocarburos aromáticos polinucleares (µg/L) Renzo[h] Renzo[k] Renzo[a] Renzo[a] Dibenzo[a h] Renzo[a h il Indeno[c d]									
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2004										
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
16/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2005										
17/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/03	<0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2006										
09/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
20/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
17/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2007										
08/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.3 (continuación)

rabia ii.3 (coi	Ittiridacionij	Hidrocarburos aromáticos polinucleares (µg/L) Renzo[h] Renzo[k] Renzo[a] Dibenzo[a h] Renzo[a h il Indeno[a d]										
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno		
2008										<u> </u>		
07/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
11/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
14/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
08/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
30/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
08/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2009												
05/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
09/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
13/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
03/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
31/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
29/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2010												
11/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
08/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
08/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
05/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		

Tabla II.3. (continuación)

Tabla II.S. (Hidrocarburos aromáticos polinucleares (µg/L) Ponzola Ponzola Ponzola Ponzola Ponzola Na Ponzola N											
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno		
2011												
03/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
01/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
01/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
01/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
25/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2012						•						
04/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
31/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
10/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
15/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
03/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
02/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
04/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		

Tabla II.4 Estación: CL 3

Latitud: S 37º 21' 57.7"

Longitud: O 69º 01' 0.1"

Descripción: río Colorado altura Desfiladero Bayo – Margen derecha

Descripcion. II	Colorado altura Desfiladero Bayo – Margen derecha Hidrocarburos aromáticos polinucleares (µg/L) Motil Dimotil Dimotil Dimotil											
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno		
2000		-			-			-				
14/02	<0,010	<0,010	<0,010	<0,010	<0,	010	<0,010	<0,010	0,012	<0,010		
13/03	<0,010	<0,010	<0,010	<0,010	<0,	010	<0,010	<0,010	<0,010	<0,010		
15/05	<0,010	<0,010	<0,010	<0,010	<0,	010	<0,010	<0,010	<0,010	<0,010		
07/08	<0,010	<0,010	<0,010	<0,010	<0,	010	<0,010	<0,010	<0,010	<0,010		
25/09	<0,010	<0,010	<0,010	<0,010	<0,	010	<0,010	<0,010	<0,010	<0,010		
06/11	<0,010	<0,010	<0,010	<0,010	0,0)11	<0,010	<0,010	0,038	0,029		
					(*) Fenantren	o + antraceno						
2001												
12/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
23/04	<0,010	<0,010	<0,010	0,010	0,040	<0,010	<0,020	<0,050	0,070	<0,050		
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
2002												
18/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	0,018	0,046	<0,005	<0,005		
06/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
24/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
25/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2003												
28/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
11/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
22/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
17/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		

Tabla II.4 (continuación)

14514 11.4 (661				Hid	drocarburos aromá	ticos polinucleare	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2004		-					-	-	-	
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	0,008	<0,010	<0,020	0,110	0,082
16/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/09	0,014	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/12	0,023	<0,005	<0,005	<0,005	<0,005	<0,005	0,013	<0,020	<0,020	<0,020
2005										
17/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/03	<0,010	<0,005	<0,005	<0,005	0,024	<0,005	<0,010	<0,020	<0,020	<0,020
11/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2006										
09/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
20/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
17/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.4. (continuación)

1 dbid ii. 4. (60				Hie	drocarburos aromá	ticos polinucleare	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2007										
08/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,20	<0,20	<0,020
09/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<<0,010	<0,020	<0,020	<0,020
06/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2008										
07/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,20	<0,20	<0,020
07/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<<0,010	<0,020	<0,020	<0,020
04/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
30/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2009										
05/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
29/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.4 (continuación)

Tabla II.4 (cor	Till Iddolotty			Hid	drocarburos aromá	iticos polinucleare	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2010										
11/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2011										
03/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
25/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2012										
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.4 (continuación)

	nuacion)			Hidrocarbi	uros aromáticos poli	inucleares (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000									
14/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	0,014	<0,010	<0,010	<0,010	<0,010
2001									
12/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
23/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,040	<0,010
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2002									
18/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
24/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003									
28/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
22/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
17/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Benzo[b+k]fluoranteno: suma de los isómeros Benzo[b]fluoranteno y Benzo[k]fluoranteno no resueltos.

Tabla II.4 (continuación)

1 4 5 1 1 1 (00)	,			Н	idrocarburos aron	náticos polinuclea	res (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2004										
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
16/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2005										
17/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0005
14/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2006										
09/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
20/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
17/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.4. (continuación)

1 abia ii.4. (CO	Thirriad Civity			Hid	Hidrocarburos aromáticos polinucleares (µg/L)						
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno	
2007										<u> </u>	
08/01	<0.005	<0.005	<0.005	<0,005	<0,005	<0.005	<0.005	<0.005	<0.005	<0.005	
12/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
09/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
11/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
09/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
06/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
10/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
15/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
10/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2008						-	•				
07/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
11/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
10/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
04/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
08/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
30/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
10/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
08/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2009											
05/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
09/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
13/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
02/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
03/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
31/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
29/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
02/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	

Tabla II.4. (continuación)

Tabla II.4.	Hidrocarburos aromáticos polinucleares (µg/L)									
Año	<u></u>	D'arra	Benzo[b]	Benzo[k]		Benzo[a]	Benzo[a]	Dibenzo[a,h]	Benzo[g,h,i]	Indeno[c,d]
	Fluoranteno	Pireno	fluoranteno	fluoranteno	Criseno	antraceno	pireno	antraceno	perileno	pireno
2010										
11/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2011			-							
03/01	<0,005	<0,005	<0.005	<0,005	<0,005	<0,005	<0,005	<0.005	<0.005	<0.005
01/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2012										
04/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
31/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II. 5. Estación: CL 4

Latitud: S 37º 43' 28.5"

Longitud: O 67º 45' 50.7"

Descripción: río Colorado altura Punto Unido – Margen izquierda

	io Colorado altui	Hidrocarburos aromáticos polinucleares (µg/L)										
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno		
2000												
14/02	<0,010	<0,010	<0,010	<0,010	0,29	9 (*)	<0,010	<0,010	<0,010	<0,010		
13/03	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010		
15/05	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010		
07/08	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010		
25/09	<0,010	<0,010	<0,010	<0,010	<0,010(*)		<0,010	<0,010	<0,010	<0,010		
06/11	<0,010	<0,010	<0,010	<0,010	0,01	5(*)	<0,010	0,0110	0,041	0,045		
					(*) Fenantren	o + Antraceno						
2001												
12/02	0,020	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
23/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
25/06	0,020	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050		
2002												
18/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
06/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
24/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
12/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
07/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
25/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005		
2003												
29/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
12/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
22/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
17/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		

Tabla II.5 (continuación)

Tabla II.5 (COI				Hic	drocarburos aromá	ticos polinucleare	s (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2004										
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
16/08	0,017	<0,005	<0,005	<0,005	<0,005	<0,005	0,012	<0,020	<0,020	<0,020
14/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
16/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2005		-					*	•		
18/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/02	<0,010	<0,005	<0,005	<0,005	0,020	0,012	<0,010	0,028	0,030	<0,020
15/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/04	0,018	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2006		-								
10/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
21/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
18/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/06	0,028	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/07	0,073	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/09	0,011	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.5. (continuación)

1 abia 11.0. (00	Hidrocarburos aromáticos polinucleares (μg/L)									
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2007										
08/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2008										
07/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
30/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2009										
05/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
29/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.5 (continuación)

Tabla II.5 (COI	Hidrocarburos aromáticos polinucleares (μg/L)									
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2010										
11/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2011										
03/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
25/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2012										
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.5 (continuación)

,				Hidrocarb	uros aromáticos poli	nucleares (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000									
14/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	<0,010	0,011	<0,010	<0,010	<0,010
2001									
12/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
23/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2002									
18/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
24/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003									
29/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
22/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
17/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Benzo[b+k]fluoranteno: suma de los isómeros Benzo[b]fluoranteno y Benzo[k]fluoranteno no resueltos.

Tabla II.5 (continuación)

Tabla II.5 (Co	ontinuacion)			Н	idrocarburos aror	náticos polinuclea	res (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2004										
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
16/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
16/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2005										
18/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/02	<0.005	<0.005	<0,005	<0.005	<0,005	<0,005	<0,005	<0.005	<0,005	<0,005
16/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2006						•				
10/01	<0,005	<0,005	<0,005	<0.005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
21/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
18/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2007										
08/01	<0.005	<0,005	<0,005	<0.005	<0.005	<0,005	<0,005	<0.005	<0,005	<0,005
13/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.5. (continuación)

				Hic	drocarburos aroma	áticos polinucleare	s (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2008			•			•				
07/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
30/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2009										
05/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
31/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
29/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2010										
11/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.5. (continuación)

rabia II.5. (c				Н	idrocarburos aron	náticos polinuclea	res (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2011										
03/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2012										
04/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
31/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II. 6 Estación: CL 5 Latitud: S 38º 01' 34.9" Longitud: O 67º 52' 53.9" Descripción: río Colorado altura Pasarela Medanito – Margen derecha

2 000po			uaniio – Margen		drocarburos aromá	ticos polinucleare	s (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2000										
14/02	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	0,01	4(*)	<0,010	<0,010	0,039	0,038
					(*) Fenantren	o + Antraceno				
2001										
13/02	0,020	<0,010	<0,010	<0,010	0,020	<0,010	<0,020	<0,050	<0,050	<0,050
24/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
26/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
14/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
30/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
04/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
2002										
19/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,011	<0,005	<0,005
07/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
26/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003										
29/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	0,018	0,046	<0,020	<0,020
10/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
23/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
18/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.6 (continuación)

Tabla II.6 (col	Turidacionij			Hic	drocarburos aromá	ticos polinucleare	s (ua/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2004										
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005/0,006	<0,010	<0,020	<0,020/0,065	<0,020/0,071
17/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	0,012	<0,020	<0,020	<0,020
14/09	0,016/0,017	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12108	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/12	0,060/0,028	<0,005	<0,005	<0,005	<0,005	<0,005	0,036/<0,010	<0,020	<0,020	<0,020
2005										
18/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
16/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2006										
09/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
20/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
17/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/07	0,018/<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	0,025	<0,020
07/08	<0,010/0,035	<0,005	<0,005	<0,005	<0,005	<0,005	0,021	<0,020/0,021	<0,020/0,350	<0,020/0,500
11/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

⁽¹⁾ Cuando los valores de las réplicas son coincidentes se indica un solo valor.

Tabla II.6. (continuación)

	Titiridacion)			Hid	drocarburos aromá	ticos polinucleare	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2007										
08/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2008										
07/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
30/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2009										
05/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
29/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.6 (continuación)

Tabla II.6 (co	ntinuacion)									
				Hid	drocarburos aromá	ticos polinucleare	es (µg/L)			
2010	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2010										
11/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2011										
03/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
01/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
-	-	-	-	-	-	-	-	-	-	-
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
25/10	<0,010	<0,005	<0,005	<0,005	<0,005		<0,010	<0,020	<0,020	<0,020
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2012										
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.6 (continuación)

Año	Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000									
14/02	<0,010	<0,010	<0,010	<0,010	0,014	<0,010	<0,010	<0,010	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2001					-				
13/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
24/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
26/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
14/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
30/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
04/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2002									
19/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0,022	0,017
26/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003									
29/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
23/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
18/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Benzo[b+k]fluoranteno: suma de los isómeros Benzo[b]fluoranteno y Benzo[k]fluoranteno no resueltos.

Tabla II.6 (continuación)

Tabla II.6 (COI	itiliaaoiorij			H	idrocarburos aron	náticos polinuclea	res (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2004										
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
17/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2005			-			•				
17/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2006										
09/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
20/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
17/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.6. (continuación)

	lundacionj			Hic	drocarburos aromá	áticos polinucleare	s (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2007										
08/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2008										
07/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
30/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2009										
05/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
31/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
29/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.6. (continuación)

				Н	idrocarburos aror	náticos polinuclea				
Año	Fluoranteno	Pireno	Benzo[b]	Benzo[k]	Criseno	Benzo[a]	Benzo[a]	Dibenzo[a,h]	Benzo[g,h,i]	Indeno[c,d]
	ridoranterio	1 110110	fluoranteno	fluoranteno	Onocho	antraceno	pireno	antraceno	perileno	pireno
2010										
11/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2011										
03/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
	-	-	-	-	-	-	-	-	-	-
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2012										
04/01	<0.005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0.005	<0,005	<0,005
31/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.6 (continuación – réplicas)

				Hidro	carburos aromátic	os polinucleares (μ	ug/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2003										
29/04 ⁽¹⁾	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/06 ⁽¹⁾	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/08 ⁽²⁾	0,026/<0,010	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,010/<0,010	<0,020/<0,010	<0,020/<0,020	<0,020/<0,020
23/09 ⁽¹⁾	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
18/11 ⁽¹⁾	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

⁽¹⁾ Cuando los valores de las réplicas son coincidentes se indica un solo valor. (1) duplicado — (2) duplicado y triplicado

Tabla II.6 (continuación – réplicas)

	and the second s												
			Hidrocarburo	s aromáticos polinuo	eleares (µg/L)								
Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno					
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005	<0,005/<0,005					
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005					
	<0,005 <0,005 <0,005/<0,005 <0,005	<0,005 <0,005 <0,005 <0,005 <0,005/<0,005 <0,005/<0,005 <0,005 <0,005	Fluoranteno Pireno fluoranteno <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005/<0,005 <0,005/<0,005 <0,005/<0,005 <0,005 <0,005 <0,005	Fluoranteno Pireno Benzo[b+k] fluoranteno Criseno <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005/<0,005 <0,005/<0,005 <0,005/<0,005 <0,005/<0,005 <0,005 <0,005 <0,005 <0,005 <0,005	Fluoranteno Pireno Benzo[b+k] fluoranteno Criseno Benzo[a] antraceno <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0	Fluoranteno Pireno fluoranteno Criseno antraceno pireno <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005/<0,005 <0,005/<0,005 <0,005/<0,005 <0,005/<0,005 <0,005/<0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005	Fluoranteno Pireno Benzo[b+k] fluoranteno Criseno Benzo[a] antraceno Benzo[a] pireno Dibenzo[a,h] antraceno <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <	Fluoranteno Pireno Benzo[b+k] fluoranteno Criseno Benzo[a] antraceno Benzo[a] pireno Dibenzo[a,h] antraceno Benzo[g,h,i] perileno <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005					

⁽¹⁾ Cuando los valores de las réplicas son coincidentes se indica un solo valor. (1) duplicado — (2) duplicado y triplicado

Tabla II. 7. Estación: CL 6 Latitud: S 38º 13'14.8"

Descripción: descarga embalse Casa de Piedra – Margen derecha Hidrocarburos aromáticos polinucleares (µg/L) Año Dimetil Dimetil Metil Metil Naftaleno Acenafteno Acenaftileno Fluoreno Fenantreno Antraceno naftaleno naftaleno fenantreno fenantreno 2000 14/02 <0,010 <0,010 <0,010 <0,010 <0,010(*) <0,010 <0,010 <0,010 <0,010 13/03 <0,010 <0,010 <0,010 <0,010 <0,010(*) <0,010 <0,010 <0,010 <0,010 15/05 <0,010 <0,010 <0,010 <0,010 0,014(*) <0.010 <0,010 <0,010 <0,010 <0,010 07/08 <0,010 <0,010 <0,010 <0,010 <0,010(*) <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 25/09 <0,010 <0,010(*) <0,010 <0,010 <0,010 06/11 <0,010 <0,010 <0,010 <0,010(*) <0,010 <0,010 <0,010 <0,010 (*) Fenantreno + Antraceno 2001 13/02 0,020 <0,010 <0.010 <0,010 <0,010 <0,010 <0,020 <0,050 <0,050 <0,050 24/04 <0,010 <0,050 <0,010 <0,010 <0,010 <0,010 <0,010 <0,020 <0,050 <0,050 26/06 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,020 <0,050 <0,050 <0,050 14/08 <0,010 <0,010 <0,010 <0,010 <0.010 <0,010 <0.020 <0.050 <0,050 <0.050 30/10 <0,010 <0,010 <0,010 <0,010 <0,010 <0,010 <0,020 <0,050 <0,050 <0,050 04/12 <0,010 <0,010 <0,010 <0,050 <0,050 <0,010 <0,010 <0,010 <0,020 <0,050 2002 19/03 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 07/05 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0.005 <0,005 <0,005 <0,005 26/06 <0,010 <0,005 <0,005 <0,005 <0.005 <0,005 <0,005 <0,005 <0,005 <0,005 13/08 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 08/10 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 26/11 <0,010 < 0.005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 < 0.005 2003 29/04 <0,005 0,010 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 <0,005 <0.005 <0.010 <0,020 <0,020 <0,020 10/06 <0.010 <0,005 <0.005 <0.005 12/08 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 23/09 <0,005 <0,020 <0,010 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,005 <0,020 18/11 <0,010 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020

Longitud: O 67° 11' 18.8"

Tabla II.7 (continuación)

Tabla II.7 (cor	iliiluacion)	Hidrocarburos aromáticos polinucleares (μg/L)										
				Hic	arocarburos aroma	ticos polinucieare	(1 5 /					
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno		
2004		•						•				
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	0,044	0,033		
17/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
14/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
12/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
16/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
14/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
2005												
18/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
15/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
15/03	0,016	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
12/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
03/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
14/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
2006												
10/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
21/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
14/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
18/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
09/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
13/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
11/07	0,052	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	0,025		
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	0,030	0,028	0,350	0,500		
12/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
10/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
14/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		

Tabla II.7 (continuación)

Tabla II.7 (contil	iluacion)								
				Hidrocarbu	ıros aromáticos poli	nucleares (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000									
14/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2001									
13/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
24/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
26/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
14/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
30/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
04/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2002								-	•
19/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
26/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
26/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003									
29/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
23/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
18/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Benzo[b+k]fluoranteno: suma de los isómeros Benzo[b]fluoranteno y Benzo[k]fluoranteno no resueltos.

Tabla II. 7 (continuación)

Tabla II. 7 (CC	. Hidrocarburos aromáticos polinucleares (μg/L)										
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno	
2004											
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
17/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
16/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2005											
18/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
15/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
15/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
03/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2006											
10/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
21/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
18/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
09/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
13/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
11/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
10/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	

Tabla II. 8. Estación: CL 7

Descripción: río Colorado altura La Adela – Margen derecha

Latitud: S 38° 59' 10.92"

	rio Colorado altu		g	Hid	drocarburos aromá	ticos polinucleare	s (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2000										
14/02	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	0,01	0(*)	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	<0,0	10(*)	<0,010	<0,010	<0,010	<0,010
2001										
14/02	0,030	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
25/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
27/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
16/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
31/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
05/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,050	<0,050	<0,050
2002										
20/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
26/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
27/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003										
30/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/06	0,012	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
13/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
24/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
19/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Longitud: O 64° 05' 34.89"

Tabla II. 8 (continuación)

	Hidrocarburos aromáticos polinucleares (μg/L)											
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno		
2004												
07/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
18/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
15/09	0,012	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
13/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
17/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
15/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
2005	_						-					
19/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
16/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
16/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
13/04	0,030	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
15/05	0,011	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020		
15/06	0,014	<0,005	<0,005	<0,005	<0,005	<0,005	0,011	<0,020	<0,020	<0,020		
2006	_						-					
11/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
22/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
15/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
19/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
10/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
14/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
11/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
12/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
10/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
14/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,020	<0,020	<0,020	<0,020		

Tabla II. 8 (continuación)

				Hidrocarb	uros aromáticos poli	inucleares (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b+k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000								-	
14/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,150	<0,010
13/03	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
15/05	<0,010	<0,010	<0,010	<0,010	<0,010	0,260	<0,010	<0,010	<0,010
07/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/09	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
06/11	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2001									
12/02	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
23/04	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
25/06	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
13/08	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
29/10	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
03/12	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2002									
20/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
26/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
27/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2003									
30/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
24/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
19/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II. 8 (continuación)

Tabla II. 6 (C	. Hidrocarburos aromáticos polinucleares (μg/L)										
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno	
2004											
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
18/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
15/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
13/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
17/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
15/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2005											
19/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
16/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
16/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
13/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
15/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
2006											
11/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
22/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
15/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
19/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
10/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
11/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
10/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
14/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	
12/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	

15/12

<0,010

<0,005

<0,005

<0,005

Tabla II. 9. Estación: CL 8

Latitud: S 39° 03' 04.52" Longitud: O 63° 57' 37.73" Descripción: río Colorado altura Colonia Julia y Echarren - Margen derecha Hidrocarburos aromáticos polinucleares (µg/L) Año Metil Dimetil Dimetil Naftaleno Acenafteno Acenaftileno Fluoreno Fenantreno Antraceno Metil naftaleno naftaleno fenantreno fenantreno 2007 09/01 <0.010 <0.005 <0.005 <0,005 <0.005 <0.005 <0.010 <0,020 <0.020 <0.020 13/02 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 <0,020 13/03 <0,010 <0.005 <0,005 <0,005 <0,005 <0,005 <0.010 <0,020 <0.020 10/04 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 <0,005 <0.020 <0,020 < 0.020 08/05 < 0.010 < 0.005 <0,005 < 0.005 <0,005 < 0.010 12/06 <0,010 <0,005 <0,005 <0.005 <0,005 <0.005 <0,010 <0,020 <0,020 <0.020 <0,005 <0,005 <0.010 <0,020 <0,020 < 0.020 10/07 < 0.010 <0,005 < 0.005 <0,005 07/08 <0,010 <0,005 <0,005 <0,005 <0,005 <0.010 <0,020 <0,020 <0,020 <0,005 11/09 <0,010 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0.020 <0,005 <0,005 16/10 < 0.010 <0,005 <0,005 <0,005 <0,005 <0,005 < 0.010 <0,020 <0,020 < 0.020 <0,010 <0,005 <0,005 <0.005 <0,005 <0,010 <0.020 <0.020 <0.020 13/11 <0.005 11/12 <0.010 < 0.005 <0.005 <0.010 <0.020 <0.020 < 0.020 < 0.005 < 0.005 < 0.005 2008 08/01 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0.020 <0,020 12/02 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 11/03 < 0.010 <0,005 <0,005 <0,005 <0,005 <0,005 < 0.010 <0,020 <0,020 < 0.020 <0,005 <0,010 <0.020 <0,020 <0.020 15/04 <0,010 <0.005 <0.005 <0,005 <0.005 <0,005 <0,020 13/05 < 0.010 <0,005 <0,005 <0,005 <0,005 < 0.010 <0,020 < 0.020 10/06 <0,010 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 <0,005 <0.005 <0,020 08/07 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 < 0.010 <0,020 < 0.020 05/08 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 09/09 <0,010 <0,005 <0,005 <0.005 <0,005 <0,010 <0,020 <0.020 <0,020 <0.005 01/10 <0.010 < 0.005 <0,005 < 0.005 <0,020 <0.020 < 0.020 < 0.005 < 0.005 < 0.010 <0,010 <0,005 <0,005 <0.005 <0,005 <0,010 <0,020 <0.020 < 0.020 11/11 <0.005 09/12 < 0.005 <0.020 < 0.010 < 0.005 < 0.005 < 0.005 < 0.005 < 0.010 < 0.020 < 0.020 2009 06/01 <0,010 <0,005 <0.005 <0.005 <0,005 <0,005 <0.010 <0,020 <0.020 <0,020 03/02 <0,010 <0.005 <0.005 <0,005 <0,005 <0.005 <0.010 <0,020 <0.020 <0.020 10/03 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 < 0.010 <0,020 <0,020 < 0.020 <0,005 <0,020 <0.020 14/04 <0,010 <0.005 <0.005 <0.005 <0.005 <0.010 <0.020 05/05 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 03/06 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020 07/07 <0,010 <0,005 <0,005 <0.005 <0.005 <0,005 <0.010 <0.020 <0.020 <0.020 <0,005 <0,020 04/08 < 0.010 <0,005 <0,005 < 0.005 < 0.005 < 0.010 <0,020 < 0.020 01/08 <0,010 <0,005 <0,005 <0.010 <0,020 <0,020 <0,020 <0.005 <0,005 <0,005 30/09 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0.010 <0,020 <0,020 < 0.020 03/11 <0,010 <0,005 <0,005 <0,005 <0,005 <0,005 <0,010 <0,020 <0,020 <0,020

<0,005

<0,005

<0,010

<0,020

<0,020

<0.020

Tabla II.9. (continuación)

Tabla II.9. (COI				Hic	drocarburos aromá	ticos polinucleare	es (µg/L)			
Año	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2010										
12/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
09/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
11/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
16/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2011										
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/02	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
07/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
05/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
25/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
12/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
2012										
04/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
31/01	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/03	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
10/04	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
15/05	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/06	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
03/07	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
08/08	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/09	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
02/10	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
06/11	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020
04/12	<0,010	<0,005	<0,005	<0,005	<0,005	<0,005	<0,010	<0,020	<0,020	<0,020

Tabla II.9. (continuación)

				Hi	drocarburos arom	náticos polinuclear	es (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2007										
09/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
16/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2008										
08/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
13/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2009										
06/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
14/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
01/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
30/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

Tabla II.9 (continuación)

1 4514 11.5 (66)				Hi	drocarburos aron	náticos polinuclea	res (µg/L)			
Año	Fluoranteno	Pireno	Benzo[b]	Benzo[k]	Criseno	Benzo[a]	Benzo[a]	Dibenzo[a,h]	Benzo[g,h,i]	Indeno[c,d]
	ridoranterio	1 110110	fluoranteno	fluoranteno	Oliscilo	antraceno	pireno	antraceno	perileno	pireno
2010										
12/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
09/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
11/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
16/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2011										
04/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/02	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
07/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
05/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
25/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
12/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
2012										
04/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
31/01	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/03	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
10/04	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
15/05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/06	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
03/07	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
08/08	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/09	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
02/10	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
06/11	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
04/12	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005

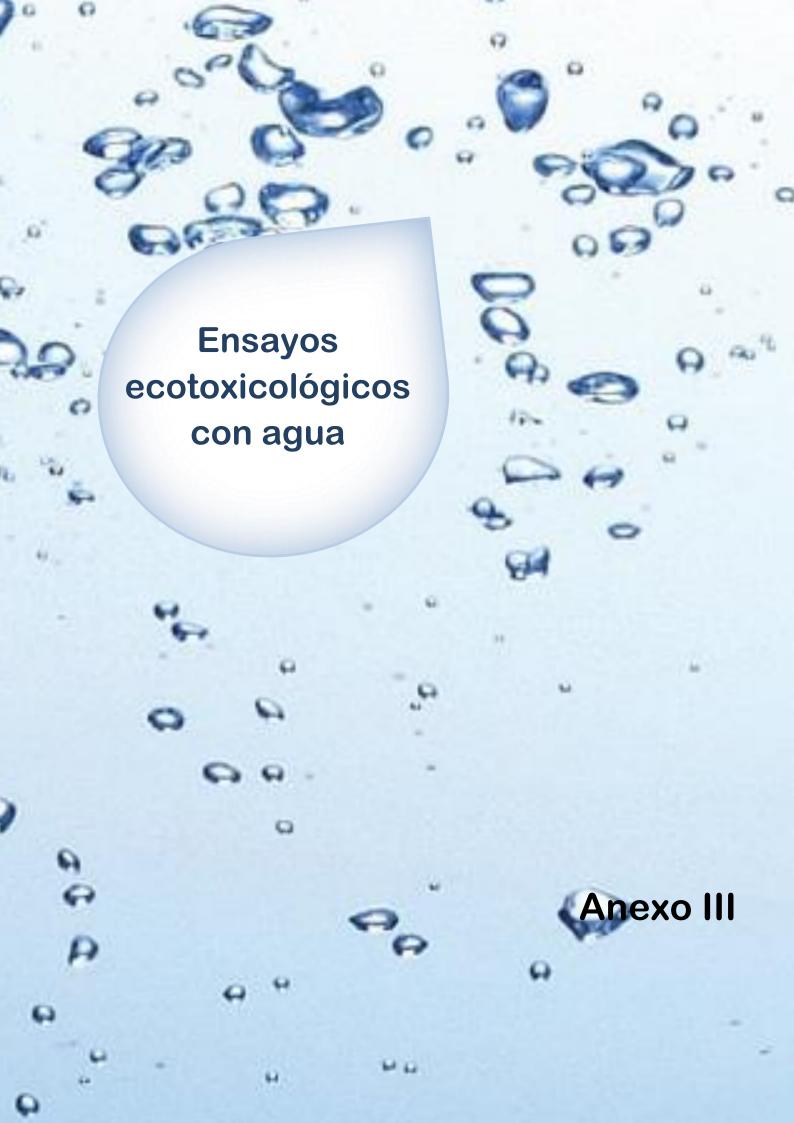


Tabla III.1 Ensayos de ecotoxicidad crónica con muestras de agua extraídas en diferentes sitios del río Colorado en el período 1999-2003, empleando Daphnia magna como

organismo de ensayo.

Estación	louyo.	1999-2000			2001			2002			2003	
Estacion	Fecha	S	R	Fecha	S	R	Fecha	S	R	Fecha	S	R
	27-09-99	(-)	(-)	22-08-01	(-)	(-)	12-08-02	(-)	(-)	22-09-03	(-)	(-)
	15-11-99	(-)	(-)	03-12-01	(-)	(-)	-	-	-	-	-	-
CL 3 (Desfiladero	15-02-00	(-)	(-)	-	-	-	-	-	-	-	-	-
Bayo)	16-03-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	15-05-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	07-08-00	(-)	(-)	-	-	-	-	-	-	-	-	-
27	27-09-99	(-)	(-)	22-08-01	(-)	(+)	12-08-02	(-)	(-)	22-09-03	(-)	(-)
	15-11-99	(-)	(-)	03-12-01	(-)	(-)	-	-	-	-	-	-
CL 4	15-02-00	(-)	(-)	-	-	-	-	-	-	-	-	-
(Punto Unido)	16-03-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	15-05-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	07-08-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	29-09-99	(-)	(-)	23-08-01	(-)	(+)	14-08-02	(-)	(-)	24-09-03	(-)	(-)
	16-11-99	(-)	(-)	05-12-01	(-)	(-)	-	-	-	-	-	-
CL 7	16-02-00	(-)	(-)	-	-	-	-	-	-	-	-	-
(La Adela)	16-03-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	18-05-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	10-08-00	(-)	(-)	-	-	-	-	-	-	-	-	-

S: supervivencia; (-) no significativamente diferente de los controles (Test exacto de Fischer, α = 0,05).

R: tasa neta de reproducción; (-) no significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $\alpha = 0.05$); (+) significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $\alpha = 0.05$)

Tabla III.1 (continuación)

Estación -	·	2005			2006		2007			
	Fecha	S	(-)	Fecha	S	R	Fecha	S	R	
CL 3 (Desfiladero Bayo)	14-03-05	(-)	(-)	09/07/06	(-)	(-)	03/09/07	(-)	(-)	
CL 4 (Punto Unido)	15-03-05	(+)	(-)	09/07/06	(-)	(-)	-	(-)	(-)	

Estación		2008			2009		2010			
Fecha S R		Fecha	S	R	Fecha	S	R			
CL 3 (Desfiladero Bayo)	09-08-08	(-)	(-)	29-09-09	(-)	(-)	07/10/10	(-)	(-)	
CL 4 (Punto Unido)	09-08-08	(-)	(-)	29-09-09	(-)	(-)	07/10/10	(-)	(-)	

Estación		2011		2012				
	Fecha	S	R	Fecha	S	R		
CL 3 (Desfiladero Bayo)	09/09/11	(-)	(-)	27/10/12	(-)	(-)		
CL 4 (Punto Unido)	09/09/11	(-)	(-)	27/10/12	(-)	(-)		

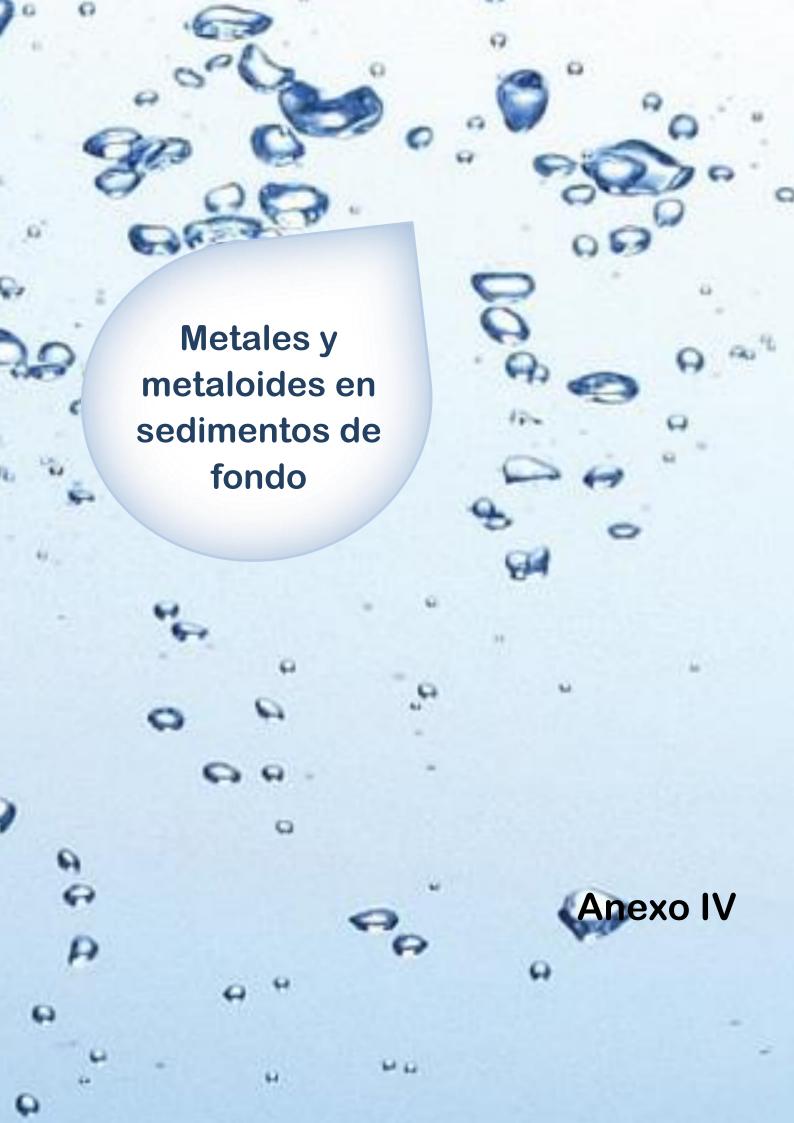


Tabla IV.1. Metales/metaloides (μg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en el río Colorado, aguas abajo de Puesto Hernández (Período 2004 – 2012)

Metal/metaloide					Año				
(µg/g)	2004	2005	2006	2007	2008	2009	2010	2011	2012
Arsénico	5,2	7,0	5,3	6,3	5,4	5,0	17	8,6	6,2
Bario	405	333	266	463	399	322	780	489	398
Boro	10	30	50	77	21	24	71	32	41
Cadmio	<0,5	<0,5	<0,5	<0,5	0,5	<0,5	<0,5	<0,5	<0,5
Cinc	78	49	61	84	48	44	202	36	21
Cobre	29	13	21	39	16	22	117	24	11
Cromo	26	23	18	19	12	9,0	42	21	20
Mercurio	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,08	<0,05
Molibdeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Níquel	19	16	15	29	19	17	59	22	13
Plata	<1	80	5	<1	<1	<1	<1	<1	<1
Plomo	8,6	8,0	8,4	8,0	7,5	8,5	29	13	8,2
Selenio	0,6	0,6	0,4	<0,2	<0,2	0,4	0,7	<0,2	0,4
Vanadio	110	98	87	151	169		084	168	94

Tabla IV.2 Metales/metaloides (μg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en la cola del embalse Casa de Piedra (Período 2000-2007)

Metal/metaloide				Año			
(µg/g)	2000	2002	2003	2004	2005	2006	2007
Arsénico	2,6	7,6	12	5,7	6,0	5,0	9,5
Bario	120	223	247	146	279	157	334
Boro	9,7	33	38	8,5	58	54	72
Cadmio	1,2	1,5	2,1	<0,5	<0,5	<0,5	<0,5
Cinc	28	73	89	56	105	54	91
Cobre	17	37	53	22	44	25	44
Cromo	6	25	35	23	38	15	21
Mercurio	0,07	<0,05	<0,05	<0,05	0,07	<0,05	<0,05
Molibdeno	<1	<1	<1	<1	<1	<1	<1
Níquel	6,7	24	25	16	20	10	29
Plata	<1	<1	<1	<1	24	6	<1
Plomo	4,8	13	11	3,2	20	10	13
Selenio	<1	1,1	1,3	0,7	0,7	0,6	<0,2
Vanadio	41	89	104	56	191	67	160

Tabla IV.2 (continuación) Metales/metaloides (µg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en la cola del embalse Casa de Piedra

Metal/metaloide			Año		
(µg/g)	2008	2009	2010	2011	2012
Arsénico	5,9	7,5	6,8	9,3	7,2
Bario	304	260	292	256	190
Boro	23	26	55	52	64
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5
Cinc	51	69	91	46	43
Cobre	17	42	44	40	20
Cromo	11	11	21	22	28
Mercurio	<0,05	<0,05	<0,05	<0,08	<0,05
Molibdeno	<1	<1	<1	<1	<1
Níquel	19	23	27	26	17
Plata	<1	<1	<1	<1	<1
Plomo	9,1	14	13	16	9,6
Selenio	0,3	0,5	1,0	<0,2	0,6
Vanadio	122	131	227	154	123

(Período 2008 - 2012)

Tabla IV.3 Metales/metaloides (μg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (Período 2000 - 2006)

Metal/metaloide			Ai	ĩo		
(μg/g)	2000	2002	2003	2004	2005	2006
Arsénico	4,6	9,6	4,8	4,3	2,0	17
Bario	140	247	87	104	409	565
Boro	18	34	8,3	18	75	145
Cadmio	1,8	1,9	0,9	<0,5	<0,5	<0,5
Cinc	40	92	29	44	112	181
Cobre	26	48	20	18	42	85
Cromo	8,5	25	12	13	15	50
Mercurio	0,15	0,09	<0,05	<0,05	<0,05	<0,05
Molibdeno	<1	<1	<1	<1	<1	<1
Níquel	8,6	32	10	13	5,5	40
Plata	<1	<1	<1	<1	102	5
Plomo	8,2	19	4,0	1,2	23	26
Selenio	<1	1,4	0,6	0,8	0,6	2,0
Vanadio	49	146	53	95	252	225

Tabla IV.4 Metales/metaloides (µg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (año 2007)

Metal/metaloide					Año 2007	7			
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3c
Arsénico	2,0	3,7	6,4	4,3	3,8	3,9	4,6	4,4	4,9
Bario	68	102	153	171	87	115	204	139	269
Boro	24	42	46	49	34	34	66	36	45
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cinc	40	35	36	57	36	32	65	34	46
Cobre	15	21	17	26	19	18	31	21	15
Cromo	5,5	7,8	9,8	14	7,3	7,8	18	8,5	13
Mercurio	<0,05	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Molibdeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Níquel	8,1	13	14	18	12	12	22	13	17
Plata	<1	<1	<1	<1	<1	<1	<1	<1	<1
Plomo	1,3	5,6	3,2	4,7	2,9	2,2	1,8	1,8	2,6
Selenio	0,3	<0,2	<0,2	<0,2	0,3	<0,2	<0,2	<0,2	<0,2
Vanadio	44	63	110	152	59	66	186	75	123

Tabla IV.4 Metales/metaloides (μg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (Período 2008 -2010)

Metal/metaloide				Siti	os en las transec	ctas a, b y c			
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3c
2008									
Arsénico	12	11	11	3,9	12	11	4,4	11	11
Bario	219	222	213	128	228	222	144	222	232
Boro	78	88	88	15	78	77	18	77	82
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cinc	15	10	35	29	32	17	33	17	8,0
Cobre	36	34	34	10	34	35	11	35	33
Cromo	15	15	15	8,7	15	15	9,5	15	15
Mercurio	<0,2	<0,05	<0,05	0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Molibdeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Níquel	27	27	26	13	27	27	13	27	26
Plata	<1	<1	<1	<1	<1	<1	<1	<1	<1
Plomo	9,5	11	12	3,9	13	9,8	3,9	9,8	11
Selenio	<0,2	<0,2	<0,2	<0,2	0,2	<0,2	0,3	<0,2	<0,2
Vanadio	221	224	216	158	218	219	174	219	222
2009	1a	1b	1c	2a	2b	2c	3a	3b	3c
Arsénico	8,5	7,7	8,1	6,6	10	7,6	3,9	8,5	9,0
Bario	163	185	161	173	187	171	113	205	197
Boro	66	70	68	20	74	61	21	69	59
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cinc	67	53	53	45	55	51	35	58	53
Cobre	36	38	44	20	36	34	12	36	35
Cromo	7,5	8,4	7,7	5,4	7,8	7,1	6,1	10	9,7
Mercurio	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Molibdeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Níquel	17	18	18	11	17	17	9,1	17	18
Plata	<1	<1	<1	<1	<1	<1	<1	<1	<1
Plomo	8,0	8,0	8,1	6,9	8,5	8,2	3,9	8,2	9,0
Selenio	<0,2	<0,2	<0,2	<0,2	1,3	1,6	<0,2	0,5	0,6
Vanadio	209	224	232	166	231	226	181	240	229
2010	1a	1b	1c	2a	2b	2c	3a	3b	3c
Arsénico	7,2	5,1	2,7	4,7	4,8	4,0	3,6	7,5	1,3
Bario	240	248	211	218	238	190	184	291	204
Boro	25	23	65	25	20	65	78	55	26
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cinc	117	109	130	40	38	24	5,0	55	2,7
Cobre	44	39	36	41	36	34	29	43	30
Cromo	22	22	22	21	20	17	17	22	18
Mercurio	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Molibdeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Níquel	26	25	23	26	25	22	22	29	21
Plata Plomo	<1 9,0	<1 9,6	<1 6,0	<1 9,3	<1 7,8	<1 6,9	<1 43	<1 13	<1 3,8
Selenio	9,0	9,6	6,0 <0,2	9,3 <0,2	7,8 <0,2	6,9 <0,2	43 07	13 04	
Vanadio	155	165	<0,2 201	<0,2 165	<0,2 190	<0,2 234	209	222	<0,2 144
variaulu	100	100	ZU I	100	190	∠34	209	222	144

Tabla IV.4 Metales/metaloides (μg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (Período 2011-2012)

Metal/metaloide (μg/g)				Siti	os en las transec	ctas a, b y c			
2011	1a	1b	1c	2a	2b	2c	3a	3b	3c
Arsénico	8,0	9,1	71	7,9	9,0	7,3	9,3	6,6	7,0
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cinc	33	2,8	23	29	4,1	14	13	22	15
Cobre	44	43	39	45	51	46	48	23	28
Cromo	23	22	21	23	25	23	22	23	20
Plomo	23	14	11	14	22	14	34	18	8,4
Plata	<1	<1	<1	<1	<1	<1	<1	<1	<1
Níquel	21	21	21	21	24	21	21	18	17
Boro	79	79	66	99	90	58	93	33	44
Vanadio	196	193	192	201	219	188	197	234	157
Molibdeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Selenio	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2
Mercurio	<0,08	<0,08	<0,08	<0,8	<0,08	<0,08	<0,08	<0,08	<0,08
Bario	225	226	224	239	245	217	225	371	205
2012	1a	1b	1c	2a	2b	2c	3a	3b	3c
Arsénico	12	8,4	11	12	13	11	12	6,4	10
Cadmio	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Cinc	124	22	35	62	76	69	54	21	54
Cobre	35	6,2	17	28	27	38	22	2,5	19
Cromo	21	8,3	16	22	28	27	20	6,7	22
Plomo	19	6,8	11	11	15	11	12	3,6	6,8
Plata	<1	<1	<1	<1	<1	<1	<1	<1	<1
Níquel	24	11	17	21	30	27	19	7,0	16
Boro	60	20	34	24	41	69	23	22	68
Vanadio	157	80	123	146	177	170	148	65	131
Molibdeno	<1	<1	<1	<1	<1	<1	<1	<1	<1
Selenio	0,4	<0,2	0,8	0,4	<0,2	0,5	<0,2	<0,2	<0,2
Mercurio	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Bario	215	111	164	210	228	217	213	100	298

Tabla IV. 5 - Metales/metaloides (μg/g, peso seco) en la fracción recuperable total de los sedimentos de fondo extraídos en el río Colorado, aguas abajo del embalse Casa de Piedra a la 0altura de Gobernador Duval (Período 2002 - 2003)

Metal/metaloide		Año
(μg/g)	2002	2003
Arsénico	5	3,4
Bario	209	416
Boro	19	34
Cadmio	1	3,3
Cinc	49	100
Cobre	17	37
Cromo	14	44
Mercurio	0,09	<0,05
Molibdeno	<1	<1
Níquel	15	20
Plata	<1	<1
Plomo	7,8	6,1
Selenio	0,7	1,6
Vanadio	75	187

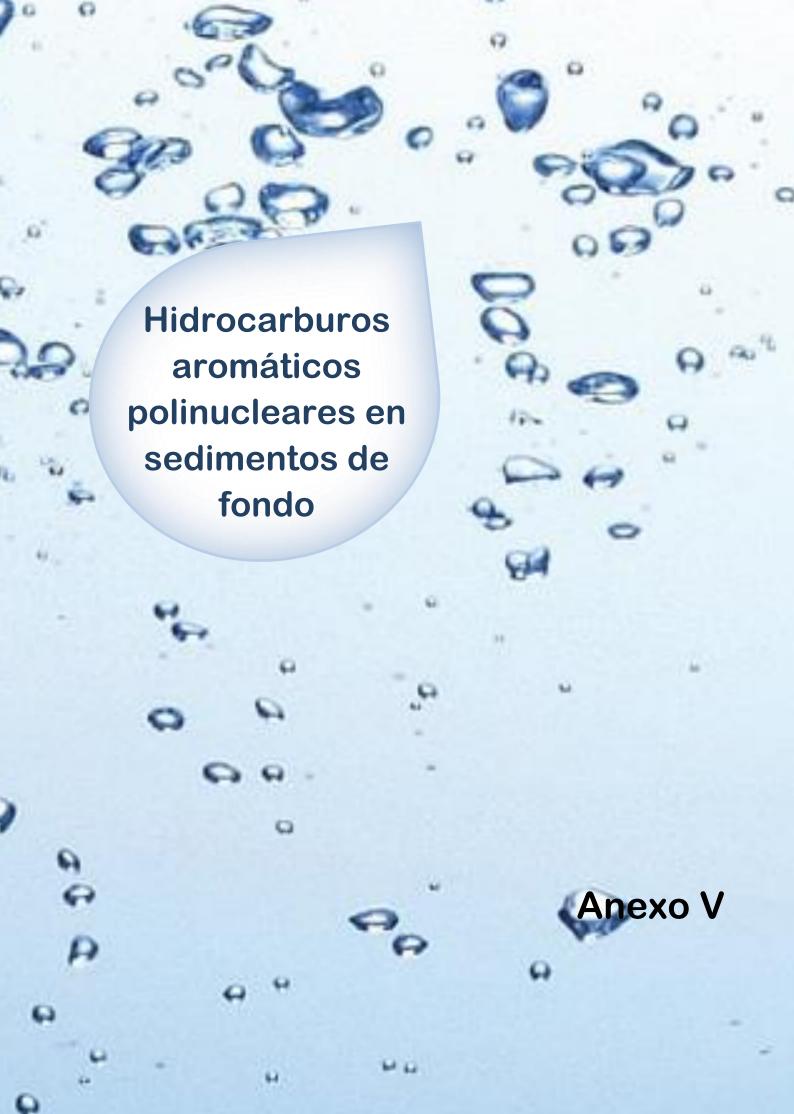


Tabla V.1 HAPs (μg/g, peso seco) en los sedimentos de fondo extraídos en el río Colorado, aguas abajo de Puesto Hernández (Período 2004 - 2012)

HAPs					Año				
HAFS	2004	2005	2006	2007	2008	2009	2010	2011	2012
Naftaleno	<lc< td=""><td>0,011</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0041</td><td>0,0369</td><td>0,0149</td><td>0,00123</td></lc<></td></lc<></td></lc<></td></lc<>	0,011	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0041</td><td>0,0369</td><td>0,0149</td><td>0,00123</td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0041</td><td>0,0369</td><td>0,0149</td><td>0,00123</td></lc<></td></lc<>	<lc< td=""><td>0,0041</td><td>0,0369</td><td>0,0149</td><td>0,00123</td></lc<>	0,0041	0,0369	0,0149	0,00123
Acenafteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0109</td><td>0,0769</td><td>ND</td><td>(0,0052)</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0109</td><td>0,0769</td><td>ND</td><td>(0,0052)</td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0109</td><td>0,0769</td><td>ND</td><td>(0,0052)</td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0109</td><td>0,0769</td><td>ND</td><td>(0,0052)</td></lc<></td></lc<>	<lc< td=""><td>0,0109</td><td>0,0769</td><td>ND</td><td>(0,0052)</td></lc<>	0,0109	0,0769	ND	(0,0052)
Antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0079</td><td><lc(0,0008)< td=""></lc(0,0008)<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0079</td><td><lc(0,0008)< td=""></lc(0,0008)<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0079</td><td><lc(0,0008)< td=""></lc(0,0008)<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0079</td><td><lc(0,0008)< td=""></lc(0,0008)<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0079</td><td><lc(0,0008)< td=""></lc(0,0008)<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0079</td><td><lc(0,0008)< td=""></lc(0,0008)<></td></lc<></td></lc<>	<lc< td=""><td>0,0079</td><td><lc(0,0008)< td=""></lc(0,0008)<></td></lc<>	0,0079	<lc(0,0008)< td=""></lc(0,0008)<>
Metil naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Dimetil naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0118</td><td>0,0203</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0118</td><td>0,0203</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0118</td><td>0,0203</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0118</td><td>0,0203</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0118</td><td>0,0203</td><td>ND</td><td><lc< td=""></lc<></td></lc<>	0,0118	0,0203	ND	<lc< td=""></lc<>
Metil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0132</td><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0132</td><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0132</td><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0132</td><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0132</td><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	0,0132	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Dimetil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0057)< td=""><td>0,0062</td><td>ND</td><td><lc< td=""></lc<></td></lc(0,0057)<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0057)< td=""><td>0,0062</td><td>ND</td><td><lc< td=""></lc<></td></lc(0,0057)<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0057)< td=""><td>0,0062</td><td>ND</td><td><lc< td=""></lc<></td></lc(0,0057)<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc(0,0057)< td=""><td>0,0062</td><td>ND</td><td><lc< td=""></lc<></td></lc(0,0057)<></td></lc<></td></lc<>	<lc< td=""><td><lc(0,0057)< td=""><td>0,0062</td><td>ND</td><td><lc< td=""></lc<></td></lc(0,0057)<></td></lc<>	<lc(0,0057)< td=""><td>0,0062</td><td>ND</td><td><lc< td=""></lc<></td></lc(0,0057)<>	0,0062	ND	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0008)< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc(0,0008)<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0008)< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc(0,0008)<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc(0,0008)< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc(0,0008)<></td></lc<></td></lc<>	<lc< td=""><td><lc(0,0008)< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc(0,0008)<></td></lc<>	<lc(0,0008)< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc(0,0008)<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0018)< td=""><td><lc< td=""><td>0,0085</td><td><lc< td=""></lc<></td></lc<></td></lc(0,0018)<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0018)< td=""><td><lc< td=""><td>0,0085</td><td><lc< td=""></lc<></td></lc<></td></lc(0,0018)<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,0018)< td=""><td><lc< td=""><td>0,0085</td><td><lc< td=""></lc<></td></lc<></td></lc(0,0018)<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc(0,0018)< td=""><td><lc< td=""><td>0,0085</td><td><lc< td=""></lc<></td></lc<></td></lc(0,0018)<></td></lc<></td></lc<>	<lc< td=""><td><lc(0,0018)< td=""><td><lc< td=""><td>0,0085</td><td><lc< td=""></lc<></td></lc<></td></lc(0,0018)<></td></lc<>	<lc(0,0018)< td=""><td><lc< td=""><td>0,0085</td><td><lc< td=""></lc<></td></lc<></td></lc(0,0018)<>	<lc< td=""><td>0,0085</td><td><lc< td=""></lc<></td></lc<>	0,0085	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,001)< td=""><td><lc(0,0013)< td=""><td>ND</td><td><lc< td=""></lc<></td></lc(0,0013)<></td></lc(0,001)<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,001)< td=""><td><lc(0,0013)< td=""><td>ND</td><td><lc< td=""></lc<></td></lc(0,0013)<></td></lc(0,001)<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc(0,001)< td=""><td><lc(0,0013)< td=""><td>ND</td><td><lc< td=""></lc<></td></lc(0,0013)<></td></lc(0,001)<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc(0,001)< td=""><td><lc(0,0013)< td=""><td>ND</td><td><lc< td=""></lc<></td></lc(0,0013)<></td></lc(0,001)<></td></lc<></td></lc<>	<lc< td=""><td><lc(0,001)< td=""><td><lc(0,0013)< td=""><td>ND</td><td><lc< td=""></lc<></td></lc(0,0013)<></td></lc(0,001)<></td></lc<>	<lc(0,001)< td=""><td><lc(0,0013)< td=""><td>ND</td><td><lc< td=""></lc<></td></lc(0,0013)<></td></lc(0,001)<>	<lc(0,0013)< td=""><td>ND</td><td><lc< td=""></lc<></td></lc(0,0013)<>	ND	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0032</td><td><lc< td=""><td>ND</td><td>0,0108</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0032</td><td><lc< td=""><td>ND</td><td>0,0108</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0032</td><td><lc< td=""><td>ND</td><td>0,0108</td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0032</td><td><lc< td=""><td>ND</td><td>0,0108</td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0032</td><td><lc< td=""><td>ND</td><td>0,0108</td></lc<></td></lc<>	0,0032	<lc< td=""><td>ND</td><td>0,0108</td></lc<>	ND	0,0108
Benzo[a]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0045</td><td>0,0058</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0045</td><td>0,0058</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0045</td><td>0,0058</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0045</td><td>0,0058</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0045</td><td>0,0058</td><td>ND</td><td><lc< td=""></lc<></td></lc<>	0,0045	0,0058	ND	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0021</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0021</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0021</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0021</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0021</td><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0021</td><td>ND</td><td><lc< td=""></lc<></td></lc<>	0,0021	ND	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Benzo[ghi]Perileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>
Indeno[1,2,3-cd]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td>ND</td><td><lc< td=""></lc<></td></lc<>	ND	<lc< td=""></lc<>

Tabla V. 2. HAPs (μg/g, peso seco) en los sedimentos de fondo extraídos en la cola del embalse Casa de Piedra (Período 2000 - 2007)

HAPs				Año			
(µg/g)	2000	2002	2003	2004	2005	2006	2007
Naftaleno	<0,010	<0,010	<0,010	<lc< td=""><td>0,040</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,040	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
<fluoreno< td=""><td><0,010</td><td><0,010</td><td><0,010</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></fluoreno<>	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
enantreno	<0,010	0,010	0,023	0,017	0,047	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<0,010	<0,010	<0,010	0,017	0,047	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil naftaleno	<0,020	<0,020	<0,020	<lc< td=""><td>0,025</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,025	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil naftaleno	<0,030	<0,030	<0,030	0,055	0,059	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil fenantreno	<0,030	<0,030	0,071	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<0,010	<0,010	0,067	<lc< td=""><td>0,054</td><td>0.030</td><td><lc< td=""></lc<></td></lc<>	0,054	0.030	<lc< td=""></lc<>
Fluoranteno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<0,010	0,010	0,019	4 C	0.042	0.040	4.0
Benzo[a]antraceno	<0,010	<0,010	<0,010	<lc< td=""><td>0,012</td><td>0,018</td><td><lc< td=""></lc<></td></lc<>	0,012	0,018	<lc< td=""></lc<>
Benzo[a]pireno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
ndeno[1,2,3-cd]pireno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V. 2. HAPs (μg/g, peso seco) en los sedimentos de fondo extraídos en la cola del embalse Casa de Piedra (Período 2008 - 2012)

HAPs			Año		
(µg/g)	2008	2009	2010	2011	2012
Naftaleno	<lc< td=""><td>0,0076</td><td>0,0377</td><td>0,0054</td><td>0,0153</td></lc<>	0,0076	0,0377	0,0054	0,0153
Acenafteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td>0,0287</td><td>0,0459</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,0287	0,0459	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0084</td><td><lc(0,0015)< td=""></lc(0,0015)<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0084</td><td><lc(0,0015)< td=""></lc(0,0015)<></td></lc<></td></lc<>	<lc< td=""><td>0,0084</td><td><lc(0,0015)< td=""></lc(0,0015)<></td></lc<>	0,0084	<lc(0,0015)< td=""></lc(0,0015)<>
Metil naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil naftaleno	<lc< td=""><td><lc(0,0057)< td=""><td>0,0137</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0057)<></td></lc<>	<lc(0,0057)< td=""><td>0,0137</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0057)<>	0,0137	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil fenantreno	<lc< td=""><td>0,0435</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	0,0435	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<lc< td=""><td>0,0208</td><td><lc(0,0046)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0046)<></td></lc<>	0,0208	<lc(0,0046)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0046)<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	0,007	<lc(0,0019)< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc(0,0019)<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	0,018	0,0062	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc(0,0018)< td=""><td><lc(0,0005)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0005)<></td></lc(0,0018)<></td></lc<>	<lc(0,0018)< td=""><td><lc(0,0005)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0005)<></td></lc(0,0018)<>	<lc(0,0005)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0005)<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	0,0063	0,0098	<lc< td=""><td><lc< td=""><td>0,0077</td></lc<></td></lc<>	<lc< td=""><td>0,0077</td></lc<>	0,0077
Benzo[a]antraceno	<lc< td=""><td>0,0108</td><td><lc(0,0015)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0015)<></td></lc<>	0,0108	<lc(0,0015)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0015)<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""><td><lc(0,0012)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0012)<></td></lc<></td></lc<>	<lc< td=""><td><lc(0,0012)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0012)<></td></lc<>	<lc(0,0012)< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0012)<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[1,2,3-cd]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V.3 HAPs (µg/g, peso seco) en los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (Período 2000 – 2006)

HAPs			Aí	ño		
(µg/g)	2000	2002	2003	2004	2005	2006
Naftaleno	0,043	<0,010	<0,010	<lc< td=""><td>0,029</td><td><lc< td=""></lc<></td></lc<>	0,029	<lc< td=""></lc<>
Acenafteno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<0,010	<0,010	<0,010	<lc< td=""><td>0,036</td><td><lc< td=""></lc<></td></lc<>	0,036	<lc< td=""></lc<>
Fenantreno	<0,010	0,010	<0,010	<lc< td=""><td>0,159</td><td><lc< td=""></lc<></td></lc<>	0,159	<lc< td=""></lc<>
Antraceno	<0,010	<0,010	<0,010	<lc< td=""><td>0,159</td><td><lc< td=""></lc<></td></lc<>	0,159	<lc< td=""></lc<>
Metil naftaleno	<0,020	<0,020	<0,020	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil naftaleno	<0,030	0,090	0,064	<lc< td=""><td>0,154</td><td>0,035</td></lc<>	0,154	0,035
Metil fenantreno	<0,030	<0,030	<0,030	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<0,030	<0,030	<0,030	<lc< td=""><td>0,230</td><td><lc< td=""></lc<></td></lc<>	0,230	<lc< td=""></lc<>
Fluoranteno	<0,010	<0,010	<0,014	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<0,010	<0,010	0,012	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<0,010	0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[1,2,3-cd]pireno	<0,010	<0,010	<0,010	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V.4 HAPs (µg/g, peso seco) en los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (año 2007)

HAPs					Año 2007				
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3с
Naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,010</td><td>0,0176</td><td>0,0106</td><td><lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,010</td><td>0,0176</td><td>0,0106</td><td><lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,010</td><td>0,0176</td><td>0,0106</td><td><lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<></td></lc<>	0,010	0,0176	0,0106	<lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<>	0,0101	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,056	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil naftaleno	0,0588	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,070</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,070</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,070</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0,070	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	0,0325	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0315</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0315</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0315</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0315</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0315</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	0,0315	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[1,2,3-cd]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V.4 HAPs (µg/g, peso seco) en los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (año 2008)

HAPs					Año 2008				
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3c
Naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,010</td><td>0,0176</td><td>0,0106</td><td><lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,010</td><td>0,0176</td><td>0,0106</td><td><lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,010</td><td>0,0176</td><td>0,0106</td><td><lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<></td></lc<>	0,010	0,0176	0,0106	<lc< td=""><td>0,0101</td><td><lc< td=""></lc<></td></lc<>	0,0101	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,056</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,056	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil naftaleno	0,009	0,0083	0,0094	0,0031	0,0075	0,0091	0,0027	0,0049	0,0062
Dimetil naftaleno	0,0433	0,0461	0,0398	0,0094	0,0381	0,0394	0,0122	0,0025	0,0318
Metil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0325</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	0,0325	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	0,0008	0,0014	0,0017	<lc< td=""><td>0,001</td><td>0,0019</td><td>0,008</td><td>0,006</td><td>0,005</td></lc<>	0,001	0,0019	0,008	0,006	0,005
Pireno	0,0007	0,0024	0,0016	<lc< td=""><td>0,0012</td><td>0,002</td><td>0,008</td><td>0,0011</td><td>0,001</td></lc<>	0,0012	0,002	0,008	0,0011	0,001
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[1,2,3-cd]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V.4 HAPs (µg/g, peso seco) en los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (años 2009)

HAPs					Año 2009	,			
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3с
Naftaleno	<lc< td=""><td>0,0147</td><td><lc(0,0019)< td=""><td><lc(0,0004)< td=""><td>0,0152</td><td><lc(0,0012)< td=""><td>0,0131</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0012)<></td></lc(0,0004)<></td></lc(0,0019)<></td></lc<>	0,0147	<lc(0,0019)< td=""><td><lc(0,0004)< td=""><td>0,0152</td><td><lc(0,0012)< td=""><td>0,0131</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0012)<></td></lc(0,0004)<></td></lc(0,0019)<>	<lc(0,0004)< td=""><td>0,0152</td><td><lc(0,0012)< td=""><td>0,0131</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0012)<></td></lc(0,0004)<>	0,0152	<lc(0,0012)< td=""><td>0,0131</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0012)<>	0,0131	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0629</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0629</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0629</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0629</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0629</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0629</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,0629	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil naftaleno	0,0257	0,0341	0,0154	<lc< td=""><td>0,0147</td><td>0,0085</td><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	0,0147	0,0085	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil naftaleno	0,132	0,171	0,0792	<lc(0,0046)< td=""><td>0,0622</td><td>0,0377</td><td><lc< td=""><td>0,0518</td><td><lc(0,0059)< td=""></lc(0,0059)<></td></lc<></td></lc(0,0046)<>	0,0622	0,0377	<lc< td=""><td>0,0518</td><td><lc(0,0059)< td=""></lc(0,0059)<></td></lc<>	0,0518	<lc(0,0059)< td=""></lc(0,0059)<>
Metil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0037</td><td>0,0055</td><td>0,0116</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0037</td><td>0,0055</td><td>0,0116</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0037</td><td>0,0055</td><td>0,0116</td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0037</td><td>0,0055</td><td>0,0116</td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0037</td><td>0,0055</td><td>0,0116</td></lc<></td></lc<>	<lc< td=""><td>0,0037</td><td>0,0055</td><td>0,0116</td></lc<>	0,0037	0,0055	0,0116
Pireno	<lc(0,0018)< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0078</td><td>0,0045</td><td>0,0099</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc(0,0018)<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0078</td><td>0,0045</td><td>0,0099</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0078</td><td>0,0045</td><td>0,0099</td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0078</td><td>0,0045</td><td>0,0099</td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0078</td><td>0,0045</td><td>0,0099</td></lc<></td></lc<>	<lc< td=""><td>0,0078</td><td>0,0045</td><td>0,0099</td></lc<>	0,0078	0,0045	0,0099
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[1,2,3-cd]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V.4 HAPs (µg/g, peso seco) en los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (año 2010)

HAPs					Año 2010				
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3c
Naftaleno	<lc< td=""><td><lc< td=""><td>0,0158</td><td>0,0196</td><td>0,0154</td><td>0,0198</td><td>0,0125</td><td>0,0079</td><td>0,0062</td></lc<></td></lc<>	<lc< td=""><td>0,0158</td><td>0,0196</td><td>0,0154</td><td>0,0198</td><td>0,0125</td><td>0,0079</td><td>0,0062</td></lc<>	0,0158	0,0196	0,0154	0,0198	0,0125	0,0079	0,0062
Acenafteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""><td>0,0047</td><td><lc< td=""><td>0,0059</td><td>0,0069</td><td>0,0067</td><td>0,0087</td><td>0,0042</td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0047</td><td><lc< td=""><td>0,0059</td><td>0,0069</td><td>0,0067</td><td>0,0087</td><td>0,0042</td></lc<></td></lc<>	0,0047	<lc< td=""><td>0,0059</td><td>0,0069</td><td>0,0067</td><td>0,0087</td><td>0,0042</td></lc<>	0,0059	0,0069	0,0067	0,0087	0,0042
Antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil naftaleno	<lc(0,0052)< td=""><td>0,0091</td><td>0,0361</td><td>0,0120</td><td>0,0316</td><td>0,0254</td><td>0,0069</td><td>0,0241</td><td>0,0069</td></lc(0,0052)<>	0,0091	0,0361	0,0120	0,0316	0,0254	0,0069	0,0241	0,0069
Metil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<lc(0,0013)< td=""><td><lc(0,0017)< td=""><td>0,0176</td><td>0,0093</td><td>0,0154</td><td>0,0124</td><td>0,014</td><td>0,0102</td><td>0,0128</td></lc(0,0017)<></td></lc(0,0013)<>	<lc(0,0017)< td=""><td>0,0176</td><td>0,0093</td><td>0,0154</td><td>0,0124</td><td>0,014</td><td>0,0102</td><td>0,0128</td></lc(0,0017)<>	0,0176	0,0093	0,0154	0,0124	0,014	0,0102	0,0128
Fluoranteno	<lc< td=""><td><lc< td=""><td><lc(0,0005)< td=""><td><lc< td=""><td><lc(0,0006)< td=""><td><lc(0,0005)< td=""><td><lc(0,0007)< td=""><td><lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<></td></lc(0,0007)<></td></lc(0,0005)<></td></lc(0,0006)<></td></lc<></td></lc(0,0005)<></td></lc<></td></lc<>	<lc< td=""><td><lc(0,0005)< td=""><td><lc< td=""><td><lc(0,0006)< td=""><td><lc(0,0005)< td=""><td><lc(0,0007)< td=""><td><lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<></td></lc(0,0007)<></td></lc(0,0005)<></td></lc(0,0006)<></td></lc<></td></lc(0,0005)<></td></lc<>	<lc(0,0005)< td=""><td><lc< td=""><td><lc(0,0006)< td=""><td><lc(0,0005)< td=""><td><lc(0,0007)< td=""><td><lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<></td></lc(0,0007)<></td></lc(0,0005)<></td></lc(0,0006)<></td></lc<></td></lc(0,0005)<>	<lc< td=""><td><lc(0,0006)< td=""><td><lc(0,0005)< td=""><td><lc(0,0007)< td=""><td><lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<></td></lc(0,0007)<></td></lc(0,0005)<></td></lc(0,0006)<></td></lc<>	<lc(0,0006)< td=""><td><lc(0,0005)< td=""><td><lc(0,0007)< td=""><td><lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<></td></lc(0,0007)<></td></lc(0,0005)<></td></lc(0,0006)<>	<lc(0,0005)< td=""><td><lc(0,0007)< td=""><td><lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<></td></lc(0,0007)<></td></lc(0,0005)<>	<lc(0,0007)< td=""><td><lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<></td></lc(0,0007)<>	<lc(0,0005)< td=""><td><lc(0,0006)< td=""></lc(0,0006)<></td></lc(0,0005)<>	<lc(0,0006)< td=""></lc(0,0006)<>
Pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Indeno[1,2,3-cd]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V.4 HAPs (μg/g, peso seco) en los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (año 2011)

HAPs					Año 2011				
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3c
Naftaleno	0,0076	<lc< td=""><td>0,0046</td><td>0,0030</td><td>0,0025</td><td>0,0058</td><td><lc< td=""><td>0,0062</td><td>0,0043</td></lc<></td></lc<>	0,0046	0,0030	0,0025	0,0058	<lc< td=""><td>0,0062</td><td>0,0043</td></lc<>	0,0062	0,0043
Acenafteno	ND	ND	ND	ND	ND	ND	0,0030	ND	ND
Acenaftileno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno	ND	ND	ND	ND	<lc< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lc<>	ND	ND	ND	ND
Fenantreno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antraceno	ND	ND	ND	0,0170	0,0190	0,0266	0,007	0,0220	0,0219
Metil naftaleno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimetil naftaleno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metil fenantreno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimetil fenantreno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranteno	0,0184	ND	<lc)< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lc)<>	ND	ND	ND	ND	ND	ND
Pireno	0,0036	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[b]fluoranteno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[k]fluoranteno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Criseno	0,0025	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[a]antraceno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[a]pireno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo[a,h]antraceno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[ghi]Perileno	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pireno	ND	ND	ND	ND	ND	ND	ND	ND	ND

ND: no detectado

Tabla V.4 HAPs (µg/g, peso seco) en los sedimentos de fondo extraídos en la toma del embalse Casa de Piedra (año 2012)

HAPs					Año 2012				
(µg/g)	1a	1b	1c	2a	2b	2c	3a	3b	3c
Naftaleno	0,0179	<lc< td=""><td><lc< td=""><td>0,0153</td><td><lc< td=""><td>0,0200</td><td>0,0311</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0153</td><td><lc< td=""><td>0,0200</td><td>0,0311</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	0,0153	<lc< td=""><td>0,0200</td><td>0,0311</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,0200	0,0311	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenafteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Acenaftileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil naftaleno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Metil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dimetil fenantreno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[b]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[k]fluoranteno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Criseno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[a]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Dibenzo[a,h]antraceno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Benzo[ghi]Perileno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
ndeno[1,2,3-cd]pireno	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla V.5 HAPs (μg/g, peso seco) en los sedimentos de fondo extraídos en el río Colorado, aguas abajo del embalse Casa de Piedra a la altura de Gobernador Duval (Período 2002- 2003)

HAPs	Añ	0
(µg/g)	2002	2003
Naftaleno	<0,010	<0,010
Acenafteno	<0,010	<0,010
Acenaftileno	<0,010	<0,010
Fluoreno	<0,010	<0,010
Fenantreno	<0,010	<0,010
Antraceno	<0,010	<0,010
Metil naftaleno	<0,020	<0,020
Dimetil naftaleno	<0,030	<0,030
Metil fenantreno	<0,030	<0,030
Dimetil fenantreno	<0,030	<0,030
Fluoranteno	<0,010	<0,010
Pireno	<0,010	<0,010
Benzo[b]fluoranteno	<0,010	<0,010
Benzo[k]fluoranteno	<0,010	<0,010
Criseno	<0,010	<0,010
Benzo[a]antraceno	<0,010	<0,010
Benzo[a]pireno	<0,010	<0,010
Dibenzo[a,h]antraceno	<0,010	<0,010
Benzo[ghi]perileno	<0,010	<0,010
Indeno[1,2,3-cd]pireno	<0,010	<0,010

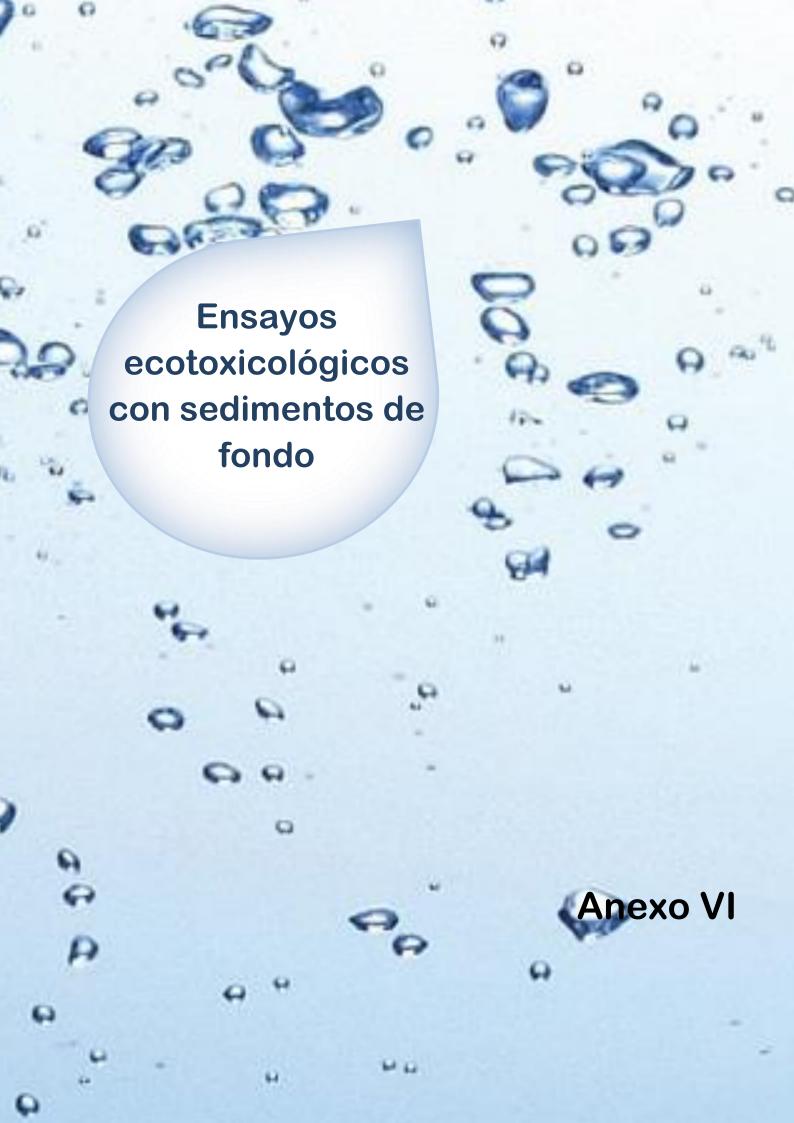


Tabla VI. 1. Ensayos de ecotoxicidad crónica con muestras de sedimentos de fondo extraídas en diferentes sitios del río Colorado y del embalse Casa de Piedra en el período 1999-2003, empleando *Hyalella curvispina* como organismo de prueba.

Estación	19	99-2000		2001			2002			2003		
	Fecha	М	L	Fecha	М	L	Fecha	М	L	Fecha	М	L
	15-11-99	(-)	(-)	11-09-01	(-)	(-)	-	-	-	-	-	-
Río Colorado, aguas abajo Puesto Hernández	15-02-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	15-05-00	(+)	(-)	-	-	-	-	-	-	-	-	-
	07-08-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	16-11-99	(-)	(-)	-	-	-	-	-	-	08-09-03	(-)	(-)
Cola embalse Casa de Piedra	16-02-00	(-)	(-)	-	-	-	-	-	-	-	-	-
Cola embaise Casa de Fledia	18-05-00	(-)	(-)	-	-	-	-	-	-	-	-	-
	10-08-00	(-)	(-)	-	-	-	-	-	-	-	-	-
Toma embalse Casa de Piedra	-	-	-	13-09-01	(-)	(-)	-	-	-	08-09-03	(-)	(-)

M: mortalidad (%); L: longitud total (mm); (-) no significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $p \le 0.05$); (+) significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $p \le 0.05$)

Tabla VI.2 Ensayos de ecotoxicidad crónica con muestras de sedimentos de fondo extraídas en el embalse Casa de Piedra (Período 2005 – 2012), empleando *Hyalella curvispina* como organismo de prueba.

Estación		2005		2006			
	Fecha	М	L	Fecha	М	L	
Toma embalse Casa de Piedra (Fracción no aireada)	03-05	(-)	(-)	17-07	(-)	(-)	
Toma embalse Casa de Piedra (Fracción aireada)			(-)	-	-	-	
Cola embalse Casa de Piedra	-	-	-	17-07	(-)	(-)	
Río Colorado (aguas abajo Puesto Hernández)	-	-	-	11-07	(-)	(-)	

M: mortalidad (%); L: longitud total (mm); (-) no significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $p \le 0.05$); (+) significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $p \le 0.05$)

Tabla VI. 2 (continuación)

Estación		2007			2008		2009			
25.0001	Fecha	М	L	Fecha	М	L	Fecha	М	L	
Toma embalse Casa de Piedra (1a)	24-05	(-)	(-)	09-08	(-)	(-)	17-09	(-)	(-)	
Toma embalse Casa de Piedra (2c)	и	(-)	(-)	-	(-)	(-)	u	(-)	(-)	
Toma embalse Casa de Piedra (3a)	и	(+)	(-)	-	(-)	(-)	u	(-)	(-)	
Cola embalse Casa de Piedra	и	(-)	(-)	-	(-)	(-)	u	(-)	(-)	
Río Colorado (aguas abajo Puesto Hernández)	22-05	(-)	(-)	-	(-)	(-)	18-09	(-)	(-)	

M: mortalidad (%); L: longitud total (mm); (-) no significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, p≤ 0,05); (+) significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, p≤ 0,05)

Tabla VI. 2 (continuación)

Estación		2010			2011		2012			
	Fecha	М	L	Fecha	M	L	Fecha	М	L	
Toma embalse Casa de Piedra (1a)	4-10	(-)	(-)	22-09	(-)	(-)	02-09	(+)	(+)	
Toma embalse Casa de Piedra (2c)	и	(-)	(-)	-	(-)	(-)	и	(+)	(+)	
Toma embalse Casa de Piedra (3a)	u	(+)	(-)	-	(-)	(-)	и	(-)	(-)	
Cola embalse Casa de Piedra	u	(-)	(-)	-	(-)	(-)	u	(-)	(-)	
Río Colorado (aguas abajo Puesto Hernández)	7-10	(-)	(-)	-	(-)	(-)	и	(-)	(-)	

M: mortalidad (%); L: longitud total (mm); (-) no significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $p \le 0,05$); (+) significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, $p \le 0,05$)

Tabla VI. 3. Ensayos de ecotoxicidad crónica con muestras de sedimentos de fondo extraídas en diferentes sitios del río Colorado y del embalse Casa de Piedra (Períodos 2001-2003 y 2005-2012), empleando *Vallisneria spiralis* como organismo de prueba.

Estación		2001		2003				
	Fecha	ΗN	CI a	Fecha	ΗN	Cl a		
Río Colorado, aguas abajo Puesto Hernández	11-09	(-)	(-)	-	-	-		
Cola embalse Casa de Piedra	-	-	-	08-09	(-)	(-)		
Toma embalse Casa de Piedra	13-09	(-)	(-)	08-09	(-)	(-)		

H N: proporción de hojas nuevas (%); Cl a: contenido en clorofila a (mg/g peso fresco); (-) no significativamente diferente de los controles (ANOVA de una vía con test de Dunnett, p≤ 0,05);

Tabla VI. 3 (continuación)

Estación		2005		2006				
	Fecha	ΗN	Cl a	Fecha	ΗN	Cl a		
Río Colorado, aguas abajo Puesto Hernández	-	-	-	07-06	(-)	(-)		
Cola embalse Casa de Piedra	03-05	(-)	(-)	07-06	(-)	(-)		
Toma embalse Casa de Piedra	03-05	(-)	(-)	и	(-)	(-)		

H N: proporción de hojas nuevas (%); Cl a: contenido en clorofila a (mg/g peso fresco); (-) no significativamente diferente de los controles ANOVA de una vía con test de Dunnett (p≤ 0,05);

Tabla VI. 3 (continuación)

Estación		2007			2008		2009			
ESTACION	Fecha	ΗN	CI a	Fecha	ΗN	Cl a	Fecha	ΗN	Cl a	
Río Colorado, aguas abajo Puesto Hernández	22-05	(-)	(-)	09-08	(-)	(-)	17-09	(-)	(-)	
Cola embalse Casa de Piedra	24-05	(+)	(+)	-	(-)	(-)	-	(-)	(-)	
Toma embalse Casa de Piedra (1a)	u	(-)	(-)	-	(+)	(-)	-	(-)	(-)	
Toma embalse Casa de Piedra (2a)	u	(-)	(-)	-	(-)	(-)	18-09	(-)	(-)	
Toma embalse Casa de Piedra (3a)	-	-	-	-	(-)	(-)	-	(-)	(-)	

H N: proporción de hojas nuevas (%); Cl a: contenido en clorofila a (mg/g peso fresco); (-) no significativamente diferente de los controles ANOVA de una vía con test de Dunnett p≤ 0,05)

Tabla VI. 3 (continuación)

Estación		2010			2011		2012			
Estacion	Fecha	HN	CI a	Fecha	HN	CI a	Fecha	HN	Cl a	
Puesto Hernández	17-10	(-)	(-)	22-11	(-)	(-)	02-09	(+)	(+)	
Cola embalse	-	(-)	(-)		(-)	(-)	и	(-)	(-)	
Toma embalse (1a)	-	(-)	(-)		(-)	(-)	u	(-)	(-)	
Toma embalse (2a)	-	(-)	(-)		(-)	(-)	и	(-)	(-)	
Toma embalse (3a)	-	(-)	(-)		(-)	(-)	и	(-)	(-)	

H N: proporción de hojas nuevas (%); Cl a: contenido en clorofila a (mg/g peso fresco); (-) no significativamente diferente de los controles (ANOVA de una vía con test de Dunnett p≤ 0,05);

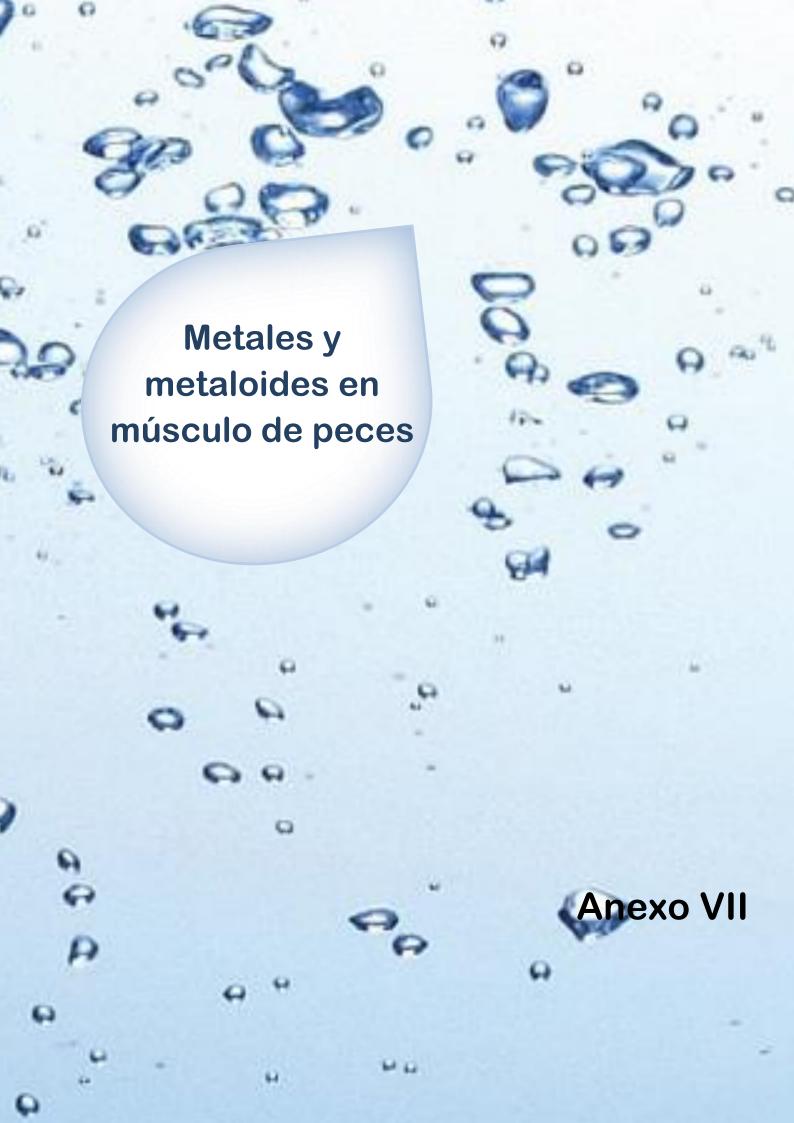


Tabla VII.1 Metales y metaloides (μg/g, peso húmedo) en músculo dorsal de diferentes especies de peces capturadas en el río Colorado (Desfiladero Bayo) (Período 2000-2012)

Año/Especie	n						М	etal/metaloi	de (µg/g, p	eso húmedo)				
		Antimonio	Arsénico	Bario	Cadmio	Cinc	Cobre	Cromo	Hierro	Mercurio	Molibdeno	Níquel	Plata	Plomo	Selenio
2000															
Perca bocona	2	<0,2	<0,2	<0,10	<0,10	5,7	<0,5	<0,5	3,6	<0,2	<0,5	<0,5	<0,8	0,15	4,1
Perquita espinuda	7	<0,2	<0,1	<0,10	<0,10	5,1	<0,5	<0,5	3,5	<0,2	<0,5	<0,5	<0,8	0,15	4,8
Bagre otuno	1	<0,2	0,11	0,20	0,11	7,2	<0,5	<0,5	5,4	<0,2	<0,5	<0,5	<0,8	0,15	2,7
2001															
Perquita espinuda	15	<0,2	<0,2	0,19	<0,10	9,1	<0,3	<0,2	9,9	<0,05	<0,2	<0,2	<0,3	10	0,9
Perca bocona	1	<0,2	<0,2	1,00	<0,10	16,0	<0,3	<0,2	20	<0,05	<0,2	<0,2	<0,3	0,3	1,1
2002															
Perquita espinuda	6	0,2	0,3	0,90	<0,10	12,4	2,1	4,0	6,3	<0,05	<0,2	1,8	<0,3	<0,15	<0,4
2003															
Perquita espinuda	22	<0,2	<0,2	<0,20	<0,10	4,2	1,1	<0,2	46	<0,05	<0,2	1,1	<0,3	<0,15	<0,4
Pejerrey bonaerense	9	<0,2	<0,2	<0,20	<0,10	7,5	0,6	0,6	14	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4
Bagre otuno	2	<0,2	<0,2	0,30	<0,10	4,8	1,2	0,6	36	<0,05	<0,2	0,8	<0,3	<0,15	<0,4

Tabla VII.1 (continuación)

Tabla VIII (o		,													
Año/Especie	n						Me	etal/metaloi	de (µg/g, pe	eso húmedo)					
		Antimonio	Arsénico	Bario	Cadmio	Cinc	Cobre	Cromo	Hierro	Mercurio	Molibdeno	Níquel	Plata	Plomo	Selenio
2004															
Perquita espinuda	4	<0,2	<0,2	<0,2	<0,1	19±2	0,5±0,1	<0,2	119±10	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4
Pejerrey bonaerense	4	<0,2	<0,2	<0,2	<0,1	21±2	2,1±0,3	<0,2	80±9	<0,05	<0,2	<0,2	<0,3	34±4	<0,4
Bagre otuno	1	<0,2	<0,2	<0,2	<0,1	18±2	2,6±0,4	<0,2	211±16	<0,05	<0,2	1,1±0,1	<0,3	<0,15	<0,4
2005															
Perquita espinuda	22	<0,2	<0,2	<0,2	<0,1	7,4±1,1	0,5±0,1	<0,2	25±6	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4
Bagre de torrentes	2	0,2	0,2	0,2	0,1	15±2	0,5±0,1	<0,2	16±5	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4
Bagre otuno	2	<0,2	<0,2	7,5±0,5	<0,1	8,8±1,3	0,6±0,1	<0,2	377±26	<0,05	<0,2	1,1±0,1	<0,3	1,1±0,2	<0,4
Perca bocona	1	<0,2	<0,2	<0,2	<0,1	6,9±1,1	0,.8±0,1	<0,2	7,9±1,4	0,22±0,02	<0,2	<0,2	<0,3	<0,15	<0,4
2006															
Perquita espinuda	18	<0,2	<0,2	<0,2	<0,1	4,5±0,6	0,3±0,1	<0,2	1,8±0,3	<0,5	<0,2	<0,2	<0,3	<0,15	<0,4
Pegerrey bonaerense	4	<0,2	<0,2	1,5±0,2	<0,1	13±2	0,3±0,1	<0,2	12±4	<0,5	<0,2	<0,2	<0,3	<0,15	<0,4
2007															
Perquita espinuda	15	<0,2	<02	1,1±0,2	<0,1	9,0±1,3	1,8±0,2	<0,2	17±5	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4
Pejerrey bonaerense	3	<0,5	<0,2	1,2±0,2	<0,1	14±2	0,6±0,2	<0,2	16±5	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4

Tabla VII.1 (continuación)

Año/Especie	n	ŕ					Meta	al/metaloide	e (µg/g, pes	o húmedo)					
·		Antimonio	Arsénico	Bario	Cadmio	Cinc	Cobre	Cromo	Hierro	Mercurio	Molibdeno	Níquel	Plata	Plomo	Selenio
2008															
Perquita espinuda	19	<0,2	<0,2	<1	<0,1	2,3±0,3	<0,2	<0,2	14±3	0,10±0,02	<0,2	<0,2	<0,3	<0,15	<0,4
Pejerrey bonaerense	13	<0,2	<0,2	<1	<0,1	2,6±0,3	<0,2	<0,2	6,7±1,2	0,88±0,09	<0,2	<0,2	<0,3		
2009															
Perquita espinuda	10	<0,2	<0,2	<1	<0,1	11±1	<0,2	<0,2	10±2	<0,04	<0,2	<0,2	<0,3	<0,15	0,5±0,1
Pejerrey bonaerense	5	<0,2	<0,2	<1	<0,1	7,0±0,6	<0,2	<0,2	8,2±1,4	<0,04	<0,2	<0,2	<0,3	<0,15	<0,4
Bagre otuno	10	<0,2	<0,2	<1	<0,1	11±1	<0,2	<0,2	7,0±1,1	0,05±0,01	<0,2	<0,2	<0,3	<0,15	0,6±0,1
2011															
Perquita espinuda	6	<0,2	0,4±0,1	<1	<0,1	11±1	0,9±0,1	<0,2	11±2	0,18±0,03	<2	<2	<3	51±4	0,9±0,1
Bagre de torrentes	1	<0,2	<0,2	<1	<0,1	7,0±0,6	<0,2	<0,2	9,0±1,7	<0,04	<0,2	<0,2	<0,3	<0,15	<0,2
Bagre otuno	2	<0,2	<0,2	<1	<0,1	11±1	1,8±0,2	<0,2	5,0±1,0	0,08±0,01	<0,2	4,0±0,3	<0,3	<0,15	1,0±0,1
Madrecita de agua	24	<0,2	<0,2	<1	<0,1	7,0±0,6	<0,2	<0,2	9,0±1,7	<0,04	<0,2	<0,2	<0,3	<0,15	<0,2
2012															
Perquita espinuda	5	<0,2	<0,2	<1	<0,1	6,7±0,6	<0,2	<0,2	8,4±1,4	0,10±0,01	<0,2	1,5±0,2	<0,3	0,6±0,1	0,6±0,1
Bagre de torrentes	2	<0,2	<0,2	<1	<0,1	17±2	<0,2	<0,2	11±2	0,15±0,01	<0,2	<0,2	<0,3	7,6±1,1	0,5±0,4

Tabla VII. 2. Metales y metaloides (μg/g, peso húmedo) en músculo dorsal de diferentes especies de peces capturadas en el embalse Casa de Piedra (cola) (Período 2000 – 2009, y 2011 – 2012)

Año/Especie	n	·	Metal/metaloide (μg/g, peso húmedo)													
		Antimonio	Arsénico	Bario	Cadmio	Cinc	Cobre	Cromo	Hierro	Mercurio	Molibdeno	Níquel	Plata	Plomo	Selenio	
2000																
Pejerrey bonaerense	23	<0,2	<0,2	<0,1	<0,1	4,7	<0,5	<0,5	1,0	<0,2	<0,5	<0,5	<0,8	0,15	4,0	
Carpa	22	<0,2	<0,2	<0,1	<0,1	4,4	<0,5	<0,5	5,4	<0,2	<0,5	<0,5	<0,8	0,15	4,9	
Perca bocona	7	<0,2	<0,2	<0,1	<0,1	3,1	<0,5	<0,5	4,8	<0,2	<0,5	<0,5	<0,8	0,15	4,4	
Trucha arco iris	1	<0,2	<0,1	<0,1	<0,1	3,3	<0,5	<0,5	3,1	<0,2	<0,5	<0,5	<0,8	0,15	2,7	
2001																
Pejerrey bonaerense	20	<0,2	<0,2	0,11	<0,1	5,6	<0,3	<0,2	11	<0,05	<0,2	<0,2	<0,3	<0,15	0,5	
Carpa	1	<0,2	<0,2	<0,10	<0,1	6,2	<0,3	<0,2	9,3	<0,05	<0,2	<0,2	<0,3	0,8	0,5	
2002																
Pejerrey bonaerense	22	<0,2	<0,2	0,7	<0,1	12,0	2,1	<0,2	18	<0,05	<0,2	2,0	<0,3	<0,15	0,7	
Carpa	7	<0,2	<0,2	0,5	<0,1	12,7	1,8	0,7	48	<0,05	<0,2	1,9	<0,3	<0,15	1,0	
Perca bocona	1	<0,2	<0,2	0,7	<0,1	2,6	1,7	<0,2	4,0	<0,05	<0,2	1,9	<0,3	<0,15	<0,4	
2003																
Pejerrey bonaerense	20	<0,2	<0,2	0,2	<0,1	13,0	1,7	0,7	9,0	<0,05	<0,2	0,6	<0,3	<0,15	<0,4	
Carpa	2	<0,2	<0,2	0,3	<0,1	6,6	1,3	0,5	45	0,38	<0,2	0,6	<0,3	<0,15	<0,4	

Tabla VII.2 (continuación)

Tabla VII.2 (co	Jiilliiu	acion)														
Año/Especie	n		Metal/metaloide (μg/g, peso húmedo)													
·		Antimonio	Arsénico	Bario	Cadmio	Cinc	Cobre	Cromo	Hierro	Mercurio	Molibdeno	Níquel	Plata	Plomo	Selenio	
2004																
Pejerrey bonaerense	23	<0,2	<0,2	<0,2	<0,1	11±2	0,7±0,1	<0,2	56±6	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4	
Carpa	9	<0,2	<0,2	<0,2	<0,1	8,7±1,1	4,2±1,1	<0,2	72±8	0,05	<0,2	<0,2	<0,3	<0,15	<0,4	
Trucha arco iris	2	<0,2	<0,2	<0,2	<0,1	30±2	3,3±0,8	<0,2	179±14	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4	
2005																
Pejerrey bonaerense	20	<0,2	<0,2	<0,2	<0,1	8,0±1,2	0,5±0,1	<0,2	5,7±1,2	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4	
Carpa	20	<0,2	<0,2	<0,2	<0,1	7,1±1,1	3,3±0,8	<0,2	7,1±1,3	0,32±0,03	<0,2	<0,2	<0,3	<0,15	<0,4	
Perca bocona	1	<0,2	<0,2	<0,2	<0,1	8,6±1,3	0,8±0,1	<0,2	4,1±0,9	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4	
2006																
Pejerrey bonaerense	20	<0,2	<0,2	<0,2	<0,1	7,2±1,1	0,4±0,1	<0,2	33±11	0,05	<0,2	<0,2	<0,3	<0,15	0,4	
2007																
Pejerrey bonaerense	20	<0,2	<0,2	1,3±0,2	<0,1	11±1,6	1,6±0,2	<0,2	22±7	<0,05	<0,2	<0,2	<0,3	<0,15	<0,4	
2008																
Pejerrey bonaerense	20	<0,2	<0,2	<1	<0,1	7,2±0,6	<0,2	<0,2	2,0±0,4	0,17±0,03	<0,2	<0,2	<0,3	<0,15	<0,4	
Carpa	8	<0,2	<0,2	<1	<0,1	5,3±0,5	<0,2	<0,2	4,2±0,7	0,09±0,02	<0,2	<0,2	<0,3	<0,15	<0,4	
Trucha marron	1	<0,2	<0,2	<1	<0,1	6,9±0,6	1,7±0,2	<0,2	4,0±0,7	0,15±0,03	<0,2	<0,2	<0,3	<0,15	<0,4	

Tabla VII.2 (continuación)

Tabla VII.2 (CC		40.0,														
Año/Especie	n		Metal/metaloide (μg/g, peso húmedo)													
		Antimonio	Arsénico	Bario	Cadmio	Cinc	Cobre	Cromo	Hierro	Mercurio	Molibdeno	Níquel	Plata	Plomo	Selenio	
2009																
Pejerrey	20															
Bonaerense		<0,2	<0,2	<1	<0,1	5,0±0,5	<0,2	<0,2	1,2±0,2	<0,04	<0,2	<0,2	<0,3	<0,15	0,6±0,1	
Carpa	8	<0,2	<0,2	<1	<,1	7,0±0,6	<0,2	<0,2	13±2	<0,04	<0,2	<0,2	<0,3	<0,15	0,5±0,1	
2011																
Pejerrey bonaerense	15	<0,2	<0,2	<1	<0,1	5,0±0,5	<0,2	<0,2	1,3±0,1	<0,04	<0,2	0,6±0,1	<0,3	<0,15	0,6±0,1	
Carpa	20	<0,2	<0,2	<1	<0,1	7,0±0,6	3,7±0,4	<0,2	11±2	0,11±0,02	<0,2	2,6±0,3	<0,3	3,0±0,2	0,7±0,1	
2012																
Pejerrey bonaerense	20	<0,2	<0,2	<1	<0,1	5,0±0,5	<0,2	<0,2	2,3±0,2	<0,04	<0,2	<0,2	<0,3	1,0±0,1	<0,2	
Carpa	20	<0,2	<0,2	<1	<0,1	5,0±0,5	<0,2	<0,2	7,3±1,1	<0,04	<0,2	<0,2	<0,3	0,5±0,1	0,4±0,1	

Tabla VIII.1. HAPs en músculo dorsal de diferentes especies de peces (µg/g, peso húmedo) capturadas en el río Colorado (Desfiladero Bayo) (Período 2000 - 2012)

Año/Especie	n	Hidrocarburos aromáticos polinucleares (µg/g, peso húmedo)												
Ano/Especie	''	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno			
2000														
Perca bocona	2	0,017	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,0400	<0,04000	<0,040			
Perquita espinuda	7	0,344	<0,010	<0,010	<0,010	<0,010	0,0475	0,0206	0,0659	0,0902	<0,040			
Bagre otuno	1	0,344	<0,010	<0,010	<0,010	<0,010	0,0475	0,0206	0,0659	0,0902	<0,040			
2001														
Perquita espinuda	15	0,012	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040			
Perca bocona	1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040			
2002														
Perquita espinuda	6	0,0181	<0,010	<0,010	<0,010	<0,010	0,022	0,023	<0,040	<0,040	<0,040			
Pejerrey bonaerense	22	0,241	<0,010	<0,010	<0,010	0,027	<0,010	0,030	<0,040	<0,040	<0,040			
2003														
Perquita espinuda	22	0,239	<0,010	0,013	0,017	0,122	0,013	0,049	0,059	0,083	<0,040			
Pejerrey bonaerense	9	0,500	<0,010	<0,010	0,019	0,112	<0,010	0,102	0,094	0,077	<0,040			
Bagre otuno	2	0,203	<0,010	<0,010	0,026	0,195	0,013	0,052	0,083	0,137	0,060			

Tabla VIII.1 (continuación)

Tabla VIII. I (CC	Jiminaao	1011)													
Año/Especie	n	Hidrocarburos aromáticos polinucleares (µg/g, peso húmedo)													
7 ti 10/ Especie		Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno <lc <l<="" <lc="" td=""><td>Dimetil fenantreno</td></lc>	Dimetil fenantreno				
2004															
Perquita espinuda	4	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
Pejerrey bonaerense	4	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
Bagre otuno	1	0,044	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
2005															
Perquita espinuda	22	0,063	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
Bagre de torrentes	2	0,100	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><0,100</td><td><0,300</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><0,100</td><td><0,300</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><0,100</td><td><0,300</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><0,100</td><td><0,300</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><0,100</td><td><0,300</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<0,100	<0,300	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
Bagre otuno	2	0,124	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><0,050</td><td><0,150</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><0,050</td><td><0,150</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><0,050</td><td><0,150</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><0,050</td><td><0,150</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><0,050</td><td><0,150</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<0,050	<0,150	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
Perca bocona	1	0,036	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
2006															
Perquita espinuda	18	0,016	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
Pejerrey bonaerense	4	<lc< td=""><td>LC</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	LC	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
2007															
Perquita espinuda	15	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				
Pejerrey bonaerense	3	<lc< td=""><td>LC</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	LC	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>				

Tabla VIII.1 (continuación)

Tabla VIII. I (Co					Hidrocarbu	uros aromáticos po	linucleares (μg/g,	peso húmedo)			
Año/Especie	n	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2008											
Perquita espinuda	19	<0,003	<0,003	<0,003	<0,003	0,0018	<0,003	0,0014	0,006	0,006	<0,006
Pejerrey bonaerense	13	<0,003	<0,003	<0,003	0,0014	<0,003	<0,003	<0,006	0,006	0,0012	<0,006
2009											
Perquita espinuda	10	0,0269	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0094</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0094</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0094</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0094</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0094</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0094</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,0094	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pejerrey bonaerense	5	0,0546	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0073</td><td>0,0077</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0073</td><td>0,0077</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0073</td><td>0,0077</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0073</td><td>0,0077</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0073</td><td>0,0077</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,0073	0,0077	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Bagre otuno/ Bagre de torrentes	10	0,0511	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0085</td><td>0,0079</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0085</td><td>0,0079</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0085</td><td>0,0079</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0085</td><td>0,0079</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0085</td><td>0,0079</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	0,0085	0,0079	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2010											
Perquita espinuda	16	<lc< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lc< td=""><td>ND</td><td>ND</td><td>ND</td></lc<></td></lc<>	ND	ND	ND	ND	ND	<lc< td=""><td>ND</td><td>ND</td><td>ND</td></lc<>	ND	ND	ND
Pejerrey bonaerense	13	0,0424	ND	ND	ND	ND	ND	<lc< td=""><td>ND</td><td>ND</td><td>ND</td></lc<>	ND	ND	ND
2011											
Perquita espinuda	6	0,0165	ND	ND	0,0073	ND	0,0108	ND	ND	ND	ND
Bagre de torrente	1	0,0532	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bagre otuno	2	0,0513	ND	ND	ND	ND	ND	ND	ND	ND	ND
Madrecita de agua	24	0,0085	ND	ND	0,0136	0,0515	ND	ND	ND	ND	ND
2012											
Perquita espinuda	5	0,0649	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Bagre de torrente	2	0,3871	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla VIII.1 (continuación)

Tabla VIII. I (C	Oritiriaac	1011)														
Año/Especie	n		Hidrocarburos aromáticos polinucleares (μg/g, peso húmedo)													
7110/23pcoic		Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno					
2000																
Perca bocona	2	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
Perquita espinuda	7	<0,010	0,090	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
Bagre otuno	1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
2001																
Perquita espinuda	15	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
Perca bocona	1	<0,010	0,090	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
2002																
Perquita espinuda	6	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
Pejerrey bonaerense	22	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
2003																
Perquita espinuda	22	0,018	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					
Pejerrey bonaerense	9	0,015	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	0,010	<0,010	<0,010					
Bagre otuno	2	0,030	0,016	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010					

Tabla VIII.1 (continuación)

A ~ ./=					Hidrocart	ouros aromáticos p	oolinucleares (µg/g	g, peso húmedo)			
Año/Especie	n	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2004											
Perquita espinuda	4	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pejerrey bonaerense	4	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Bagre otuno	1	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2005											
Perquita espinuda	22	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Bagre de torrentes	2	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Bagre otuno	2	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Perca bocona	1	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2006											
Perquita espinuda	18	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pejerrey bonaerense	4	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2007											
Perquita espinuda	15	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pejerrey bonaerense	3	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla VIII. I (C	or itiriaac	7011)									
Año/Especie	n				Hidrocarl	ouros aromáticos	polinucleares (µg/	g, peso húmedo)			
Allo/Especie	"	Fluoranteno	Pireno	Benzo[b] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2008											
Perquita espinuda	19	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pejerrey bonaerense	13	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2009											
Perquita espinuda	10	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Pejerrey bonaerense	5	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Bagre otuno/ Bagre de torrentes	10	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2010											
Perquita espinuda	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pejerrey bonaerense	13	ND	ND	0,0098	ND	ND	ND	ND	ND	ND	ND
2011											
Perquita espinuda	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bagre de torrente	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bagre otuno	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Madrecita de agua	24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2012											
Perquita espinuda	5	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Bagre de torrente	2	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla VIII.2. HAPs en músculo dorsal de diferentes especies de peces (µg/g, peso húmedo) capturadas en el embalse Casa de Piedra (cola) (Período 2000- 2012)

A ~ (F						uros aromáticos po				·	
Año/Especie	n	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2000											
Pejerrey bonaerense	23	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040
Carpa	22	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040
Perca bocona	7	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040
Trucha arco iris	1	0,0289	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040
2001											
Pejerrey bonaerense	20	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040
Carpa	1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040
2002											
Carpa	22	0,044	<0,010	<0,010	<0,010	<0,010	<0,010	<0,020	<0,040	<0,040	<0,040
Perca bocona	1	0,099	<0,010	<0,010	<0,010	<0,010	0,011	<0,020	<0,040	<0,040	<0,040
2003											
Pejerrey bonaerense	20	0,209	<0,010	<0,010	0,012	0,072	<0,010	0,041	0,048	0,053	<0,040
Carpa	2	0,020	<0,010	<0,010	<0,010	0,025	<0,010	<0,020	<0,040	<0,040	<0,040

					Hidrocarbu	uros aromáticos po	olinucleares (µg/g,	peso húmedo)			
Año/Especie	n	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2004											
Pejerrey bonaerense	23	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Carpa	9	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0086</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0086</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0086</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0086</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,0086</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0,0086	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Trucha arco iris	2	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2005											
Pejerrey bonaerense	20	0,030	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,008</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,008</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td>0,008</td><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0,008	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Carpa	20	0,036	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Perca bocona	1	0,051	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2006											
Pejerrey bonaerense	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2007											
Pejerrey bonaerense	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>≺LC</td></lc<></td></lc<>	<lc< td=""><td>≺LC</td></lc<>	≺LC

					Hidrocarbu	uros aromáticos po	olinucleares (µg/g,	peso húmedo)			
Año/Especie	n	Naftaleno	Acenafteno	Acenaftileno	Fluoreno	Fenantreno	Antraceno	Metil naftaleno	Dimetil naftaleno	Metil fenantreno	Dimetil fenantreno
2008											
Pejerrey bonaerense	20	0,003	0,003	0,003	0,003	0,003	0,003	0,0034	0,006	0,0024	0,006
Carpa	8	0,003	0,003	0,003	0,003	0,0022	0,003	0,006	0,006	0,006	0,006
Trucha marrón	1	0,003	0,003	0,003	0,0015	0,0045	0,003	0,0017	0,006	0,006	0,006
2009											
Pejerrey bonaerense	20	0,0194	<lc <lc<="" td=""><td><lc< td=""><td>0,0088</td><td><lc< td=""><td><lc(0,0038)< td=""><td>0,0091</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0038)<></td></lc<></td></lc<></td></lc>	<lc< td=""><td>0,0088</td><td><lc< td=""><td><lc(0,0038)< td=""><td>0,0091</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0038)<></td></lc<></td></lc<>	0,0088	<lc< td=""><td><lc(0,0038)< td=""><td>0,0091</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0038)<></td></lc<>	<lc(0,0038)< td=""><td>0,0091</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0038)<>	0,0091	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>	
Carpa	8	0,0115	<lc< td=""><td><lc< td=""><td><lc< td=""><td>0,0046</td><td><lc(0,0014)< td=""><td><lc(0,0029)< td=""><td>0,0032</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0029)<></td></lc(0,0014)<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td>0,0046</td><td><lc(0,0014)< td=""><td><lc(0,0029)< td=""><td>0,0032</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0029)<></td></lc(0,0014)<></td></lc<></td></lc<>	<lc< td=""><td>0,0046</td><td><lc(0,0014)< td=""><td><lc(0,0029)< td=""><td>0,0032</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0029)<></td></lc(0,0014)<></td></lc<>	0,0046	<lc(0,0014)< td=""><td><lc(0,0029)< td=""><td>0,0032</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0029)<></td></lc(0,0014)<>	<lc(0,0029)< td=""><td>0,0032</td><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc(0,0029)<>	0,0032	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2011											
Pejerrey bonaerense	15	0,0088	<lc(0,0028)< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lc(0,0028)<>	ND	ND	ND	ND	ND	ND	ND	ND
Carpa	20	ND	ND	ND	<lc(0,0011)< td=""><td><lc(0,0016)< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lc(0,0016)<></td></lc(0,0011)<>	<lc(0,0016)< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lc(0,0016)<>	ND	ND	ND	ND	ND
2012											
Pejerrey bonaerense	20	0,0977	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Carpa	20	0,0238	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla VIII.2 (continuación)

Año/Especie	5				Hidrocart	ouros aromáticos p	oolinucleares (µg/ç	g, peso húmedo)			
Allo/Especie	n	Fluoranteno	Pireno	Benzo[k] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2000											
Pejerrey bonaerense	23	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Carpa	22	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Perca bocona	7	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Trucha arco iris	1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2001			2012								
Pejerrey bonaerense	20	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Carpa	1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2002											
Carpa	22	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Perca bocona	1	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
2003											
Pejerrey bonaerense	20	0,011	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010
Carpa	2	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010	<0,010

Tabla VIII.2 (Co		,									
Año/Especie	n				Hidrocark	ouros aromáticos	oolinucleares (µg/ç	g, peso húmedo)			
Allo/Especie	"	Fluoranteno	Pireno	Benzo[k] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2004											
Pejerrey bonaerense	23	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Carpa	9	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Trucha arco iris	2	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2005											
Pejerrey bonaerense	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Carpa	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Perca bocona	1	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2006											
Pejerrey bonaerense	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2007											
Pejerrey bonaerense	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Año/Especie	n	·			Hidrocarb	uros aromáticos p	oolinucleares (µg/g	ı, peso húmedo)			
7 (110/ Especie		Fluoranteno	Pireno	Benzo[k] fluoranteno	Benzo[k] fluoranteno	Criseno	Benzo[a] antraceno	Benzo[a] pireno	Dibenzo[a,h] antraceno	Benzo[g,h,i] perileno	Indeno[c,d] pireno
2008											
Pejerrey bonaerense	20	0,0018	0,0051	0,003	0,003	0,0071	0,003	0,003	0,003	0,003	0,003
Carpa	8	0,0012	0,0028	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
Trucha arco iris	1	0,0017	0,0051	0,003	0,03	0,003	0,003	0,003	0,003	0,003	0,003
2009											
Pejerrey bonaerense	20	0,0038	0,0048	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Carpa	8	<lc(0,0014)< td=""><td><lc(0,002)< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc(0,002)<></td></lc(0,0014)<>	<lc(0,002)< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc(0,002)<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
2011											
Pejerrey bonaerense	15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carpa	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2012											
Pejerrey bonaerense	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>
Carpa	20	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""><td><lc< td=""></lc<></td></lc<></td></lc<>	<lc< td=""><td><lc< td=""></lc<></td></lc<>	<lc< td=""></lc<>

Tabla IX.1 – Registros mensuales de conductividad específica en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

				Co	onductivid	lad espe	cífica (µS	/cm) – Perí	odo 2013	3				
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	703	893	902	909	853	896	846	882	797	754	454	467
Grande	Bardas Blancas	CL 1	974	1.125	1.294	1.400	1.412	1.566	1.492	1.446	1.251	1.312	621	591
	Buta Ranquil	CL 2	924	1.128	1.218	1.290	1.324	1.278	1.226	1.276	1.141	1.148	683	623
	Desfiladero Bayo	CL 3	933	1.219	1.216	1.346	1.340	1.381	1.217	1.322	1.182	1.153	740	663
Colorado	Punto Unido	CL 4	914	1.289	1.317	1.404	1.429	1.607	1.316	1.313	1.278	1.224	794	713
Colorado	Pasarela Medanito	CI 5	941	1.424	1.316	1.473	1.471	1.735	1.377	1.340	1.329	1.282	837	721
	Casa de Piedra	CL 6	1.278	1.232	1.333	1.412	1.429	1.485	1.494	1.525	1.520	1.538	1.485	1.477
	Juliá y Echarren	Cl 7	1.394	1.314	1.404	1.485	1.783	1.879	1.856	1.655	1.575	1.559	1.631	1.628

Tabla IX.2 – Promedios mensuales de registros de conductividad específica en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

			(Conductivid	ad espec	ífica (µS	/cm) – Pr	omedios Pe	eríodo 19	99 - 2009				
Río	Río Sitio Estación Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre													
Barrancas	Río Barrancas	CL 0	625	693	667	685	664	664	672	703	684	565	406	400
Grande	Bardas Blancas	CL 1	654	837	995	1.122	1.150	1.073	1.042	1.035	1.033	865	581	523
Colorado	Buta Ranquil	CL 2	683	851	957	1.032	1.077	1.000	988	1.011	987	826	587	543

Tabla IX.3 – Registros mensuales de concentración de Sólidos Disueltos Totales en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

				S	ólidos Dis	sueltos T	otales (m	g/L) – Períd	odo 2013					
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	434	495	569	614	526	505	519	520	455	455	277	327
Grande	Bardas Blancas	CL 1	540	731	830	885	917	974	934	900	771	853	382	359
	Buta Ranquil	CL 2	547	688	782	881	864	774	775	802	709	729	428	401
	Desfiladero Bayo	CL 3	555	813	796	864	837	847	776	838	722	727	471	408
Colorado	Punto Unido	CL 4	579	826	769	905	958	1.155	863	828	797	791	531	438
Colorado	Pasarela Medanito	CI 5	598	948	864	971	994	1.199	889	837	833	814	527	475
	Casa de Piedra	CL 6	800	732	897	961	995	1.021	1.047	1.056	1.048	1.055	973	989
	Juliá y Echarren	Cl 7	894	804	944	1.028	1.208	1.281	1.284	1.148	1.068	1.089	1.108	1.091

Tabla IX.4 – Promedios mensuales de registros de concentración de Sólidos Disueltos Totales en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

				Sólidos Dis	ueltos To	tales (mo	g/L) – Pro	medios Pe	ríodo 199	99 – 2009				
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	402	426	423	407	408	398	405	418	407	346	255	250
Grande	Bardas Blancas	CL 1	412	526	634	693	742	669	658	644	644	540	377	325
Colorado	Buta Ranquil	CL 2	445	548	606	645	682	617	626	635	622	548	370	343

Tabla IX.5 – Registros mensuales de concentración de Cloruros en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

					CI	loruro (m	g/L) – Pe	ríodo 2013						
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	104	131	146	162	165	179	169	172	155	156	65	61
Grande	Bardas Blancas	CL 1	79	187	222	246	256	305	285	266	215	240	84	81
	Buta Ranquil	CL 2	127	169	201	217	223	222	219	221	195	191	87	87
	Desfiladero Bayo	CL 3	115	175	205	225	221	250	218	235	201	200	93	89
Colorado	Punto Unido	CL 4	130	150	216	222	226	209	217	230	224	204	108	96
Colorado	Pasarela Medanito	CI 5	133	181	218	236	231	234	238	232	232	214	139	99
	Casa de Piedra	CL 6	188	179	180	187	184	190	188	202	196	224	220	216
	Juliá y Echarren	Cl 7	207	176	193	195	255	268	260	221	205	212	236	247

Tabla IX.6 – Promedios mensuales de registros de concentración de Cloruros en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

				С	loruro (m	g/L) – Pr	omedios	Período 199	9-2009						
Rio															
Barrancas															
Grande	Bardas Blancas	CL 1	87	116	145	175	186	167	163	160	157	125	73	60	
Colorado	Buta Ranquil	CL 2	86	101	139	153	171	149	156	153	147	121	62	64	

Tabla IX.7 – Registros mensuales de concentración de Sulfato en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

					S	ulfato (m	g/L) – Pe	ríodo 2013						
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	137	184	169	123	100	108	98	100	96	80	61	81
Grande	Bardas Blancas	CL 1	249	251	251	228	262	233	220	262	232	222	114	118
	Buta Ranquil	CL 2	204	239	250	241	238	223	205	203	188	193	136	119
	Desfiladero Bayo	CL 3	221	305	238	257	244	234	213	218	198	188	139	127
Colorado	Punto Unido	CL 4	222	359	275	298	318	469	257	210	219	227	131	140
Colorado	Pasarela Medanito	CI 5	237	405	259	308	323	520	248	230	231	232	148	134
	Casa de Piedra	CL 6	306	286	351	400	393	425	406	411	444	399	372	378
	Juliá y Echarren	Cl 7	336	315	372	411	438	505	508	460	425	437	416	401

Tabla IX.8 – Promedios mensuales de registros de concentración de Sulfato en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

				S	ulfato (m	g/L) – Pr	omedios	Período 199	9-2009						
Rio															
Barrancas															
Grande	Bardas Blancas	CL 1	139	179	208	219	226	207	198	205	189	167	116	118	
Colorado	Buta Ranquil	CL 2	152	190	199	196	199	186	152	193	179	151	109	112	

Tabla IX.9 – Registros mensuales de concentración de Sodio en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

					5	Sodio (m	g/L) – Per	íodo 2013						
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	68	75	90	108	93	103	99	98	90	85	38	36
Grande	Bardas Blancas	CL 1	83	115	137	150	157	183	166	158	130	139	52	47
	Buta Ranquil	CL 2	86	107	134	144	138	135	128	132	115	113	56	52
	Desfiladero Bayo	CL 3	84	106	135	142	136	156	138	136	118	119	54	55
Colorado	Punto Unido	CL 4	95	112	140	148	142	161	143	136	130	127	66	62
Colorado	Pasarela Medanito	CI 5	237	405	259	308	323	520	248	230	231	232	148	134
	Casa de Piedra	CL 6	133	128	129	131	122	128	122	124	125	137	139	134
	Juliá y Echarren	Cl 7	153	136	141	141	174	189	178	145	118	139	158	151

Tabla IX.10 – Promedios mensuales de registros de concentración de Sodio en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

				5	Sodio (mg	J/L) – Pro	medios F	Período 1999	9-2009						
Rio	io Sitio Estación Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre														
Barrancas															
Grande	Bardas Blancas	CL 1	54	74	96	113	116	107	107	104	100	80	46	40	
Colorado	Buta Ranquil	CL 2	41	70	89	101	108	96	99	102	94	74	47	42	

Tabla IX.11 – Registros mensuales de concentración de Potasio en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

					P	otasio (m	g/L) – Pe	ríodo 2013						
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	2,5	3,1	3,0	3,2	2,7	3,6	3,3	3,4	3,3	3,1	2,4	2,0
Grande	Bardas Blancas	CL 1	2,1	2,8	3,1	3,2	2,8	4,2	3,6	3,6	3,3	3,4	1,8	1,5
	Buta Ranquil	CL 2	2,4	3,2	3,2	3,4	3,0	4,3	3,8	3,9	3,6	3,6	2,4	2,0
	Desfiladero Bayo	CL 3	2,4	3,4	3,3	3,9	3,1	4,4	3,8	4,0	3,7	3,6	2,6	2,2
Colorada	Punto Unido	CL 4	2,7	3,9	3,5	3,9	3,2	5,6	4,0	4,0	4,2	3,5	3,0	2,4
Colorado	Pasarela Medanito	CI 5	2,8	4,4	3,5	4,6	3,1	5,4	4,2	4,1	4,2	3,6	2,9	4,4
	Casa de Piedra	CL 6	3,9	3,8	3,8	4,1	3,0	4,9	4,8	4,9	4,8	4,7	4,6	4,4
	Juliá y Echarren	Cl 7	4,4	4,3	4,0	4,5	3,2	5,3	5,0	4,8	4,7	4,6	5,4	5,2

Tabla IX.12 – Promedios mensuales de registros de concentración de Potasio en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

				P	otasio (m	g/L) – Pr	omedios	Período 199	9-2009					
Rio	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Rio Barrancas	CL 0	1,9	2,1	2,4	2,6	2,5	2,5	2,8	2,8	2,7	2,6	2,0	1,7
Grande	Bardas Blancas	CL 1	1,5	1,8	2,2	2,6	2,6	2,5	2,6	2,6	2,5	2,4	1,6	1,3
Colorado	Buta Ranquil	CL 2	1,8	2,3	2,5	2,9	3,1	2,8	3,0	3,1	2,9	2,7	2,0	1,7

Tabla IX.13 – Registros mensuales de concentración de Calcio en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

					C	Calcio (m	g/L) – Per	íodo 2013						
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	66,0	102,0	86,0	62,0	60,0	61,0	60,0	66,0	63,0	56,0	41,8	48,0
Grande	Bardas Blancas	CL 1	90,0	99,0	116,0	112,0	120,0	120,0	120,0	135,0	110,0	112,0	64,0	64,0
	Buta Ranquil	CL 2	85,0	115,0	112,0	105,0	117,0	106,0	97,0	113,0	95,0	96,0	68,0	64,0
	Desfiladero Bayo	CL 3	88,0	137,0	114,0	110,0	118,0	115,0	101,0	115,0	98,0	98,1	76,0	68,0
Colorado	Punto Unido	CL 4	86,0	146,0	126,0	125,0	137,0	169,0	123,0	111,0	112,0	104,0	76,0	72,0
Colorado	Pasarela Medanito	CI 5	90,0	187,0	122,0	134,0	142,0	201,0	115,0	112,0	111,0	112,0	80,0	72,0
	Casa de Piedra	CL 6	120,0	122,0	149,0	158,0	154,0	177,0	183,0	179,0	188,0	176,0	157,0	161,0
	Juliá y Echarren	Cl 7	124,0	127,0	146,0	156,0	180,0	192,0	188,0	199,0	191,0	181,0	181,0	181,0

Tabla IX.14 – Promedios mensuales de registros de concentración de Calcio en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

				C	Calcio (mo	g/L) – Pro	omedios F	Período 1999	9-2009						
Rio															
Barrancas															
Grande	Bardas Blancas	CL 1	66,8	70,3	94,9	104,0	104,6	96,9	84,8	95,6	97,0	81,6	60,1	54,7	
Colorado	Buta Ranquil	CL 2	67,3	110,8	89,4	92,1	95,6	89,0	78,9	90,9	91,4	78,6	58,6	53,8	

Tabla IX.15 – Registros mensuales de concentración de Magnesio en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

					Ма	ignesio (r	ng/L) – P	eríodo 201:	3					
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	4,6	3,0	10,7	9,8	12,0	16,0	8,1	8,1	5,7	8,0	5,9	4,9
Grande	Bardas Blancas	CL 1	2,3	10,1	10,2	14,0	14,5	10,1	9,7	11,7	12,0	13,0	3,9	4,9
	Buta Ranquil	CL 2	7,7	9,4	10,0	14,8	12,1	12,8	16,0	8,8	12,0	14,0	4,9	6,8
	Desfiladero Bayo	CL 3	9,0	9,1	9,3	20,0	13,5	11,7	10,1	14,6	13,9	12,0	4,9	3,9
Colorado	Punto Unido	CL 4	9,7	7,0	9,5	17,5	20,0	20,2	11,0	14,5	14,0	14,0	5,9	3,4
Colorado	Pasarela Medanito	CI 5	12,8	7,6	11,0	17,8	17,0	22,3	18,6	17,7	16,8	14,0	11,7	3,9
	Casa de Piedra	CL 6	14,0	15,4	11,2	15,6	25,0	16,9	11,0	20,8	20,0	20,3	19,6	19,6
	Juliá y Echarren	Cl 7	17,4	6,1	15,8	21,2	19,0	21,6	31,0	12,0	21,0	18,0	14,7	22,0

Tabla IX.16 – Promedios mensuales de registros de concentración de Magnesio en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

				Ма	ignesio (r	ng/L) – F	romedios	Período 19	99-2009						
Rio															
Barrancas															
Grande	Bardas Blancas	CL 1	5,9	5,8	7,4	6,5	9,0	8,3	12,6	8,7	8,0	9,0	5,6	5,2	
Colorado	Buta Ranquil	CL 2	10,1	6,6	10,8	8,7	10,1	9,0	8,8	10,0	10,2	7,8	6,0	6,0	

Tabla IX.17 – Registros mensuales de Dureza Total en los ríos Grande, Barrancas y Colorado obtenidos en el año 2013

	Dureza total (mg/L CaCO ₃) – Período 2013													
Río	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Río Barrancas	CL 0	184,0	266,0	260,0	196,0	199,0	219,0	183,0	198,0	180,0	173,0	129,0	141,0
Grande	Bardas Blancas	CL 1	234,0	288,0	331,0	337,0	359,0	343,0	340,0	385,0	323,0	332,0	175,0	181,0
	Buta Ranquil	CL 2	244,0	327,0	321,0	324,0	343,0	318,0	307,0	320,0	286,0	298,0	191,0	189,0
	Desfiladero Bayo	CL 3	257,0	379,0	322,0	358,0	350,0	337,0	293,0	348,0	304,0	295,0	211,0	187,0
Colorado	Punto Unido	CL 4	255,0	394,0	355,0	384,0	424,0	506,0	351,0	338,0	332,0	320,0	215,0	195,0
Colorado	Pasarela Medanito	CI 5	277,0	500,0	350,0	408,0	426,0	595,0	363,0	354,0	346,0	338,0	249,0	197,0
	Casa de Piedra	CL 6	357,0	368,0	418,0	458,0	489,0	512,0	504,0	534,0	554,0	523,0	473,0	482,0
	Juliá y Echarren	Cl 7	381,0	342,0	429,0	476,0	529,0	570,0	598,0	548,0	565,0	529,0	513,0	543,0

Tabla IX.18 – Promedios mensuales de registros de Dureza Total en los ríos Grande, Barrancas y Colorado correspondientes al período 1999-2009

	Dureza total (mg/L CaCO₃) – Promedios Período 1999-2009													
Rio	Sitio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Rio Barrancas	CL 0	230,3	218,6	187,3	156,8	139,8	147,2	146,8	152,2	159,1	141,7	112,2	114,3
Grande	Bardas Blancas	CL 1	190,8	220,2	276,2	292,9	300,6	281,2	263,9	275,2	280,0	248,6	179,5	160,8
Colorado	Buta Ranquil	CL 2	207,6	264,2	262,4	270,1	270,7	257,7	235,0	265,5	267,3	235,9	172,0	160,9

Tabla IX.19 – Registro de concentraciones iónicas expresadas en miliequivalentes/litro obtenidos en el año 2013 en diferentes estaciones sobre los ríos Grande, Barrancas y Colorado

Río	Sitio	Estación	Bicarbonato (me/L)	Carbonato (me/L)	Cloruros (me/L)	Sulfatos (me/L)	Sodio (me/L)	Potasio (me/L)	Calcio (me/L)	Magnesio (me/L)
Barrancas	Bardas Blancas	CL0	1,29	0,00	5,80	4,58	5,50	0,08	5,25	0,80
Grande	Bardas Blancas	CL 1	1,34	0,00	3,91	2,32	3,56	0,08	3,21	0,66
	Buta Ranquil	CL 2	1,50	0,00	5,07	4,23	4,85	0,08	4,88	0,89
	Casa de Piedra	CL 6	1,64	0,00	5,53	7,93	5,62	0,11	8,00	1,44
Colorado	Pichi Mahuida		1,66	0,00	6,02	8,11	6,15	0,12	8,04	1,54
	Juliá y Echarren	CL 7	1,75	0,00	6,29	8,72	6,60	0,12	8,51	1,51
	Paso Alsina		1,84	0,00	6,33	8,95	6,67	0,11	8,50	1,77

Tabla IX.20 – Relación Sólidos disueltos totales (mg/L) /Conductividad específica (µS/cm) correspondiente a mediciones realizadas en el año 2013

Río	Sitio	Fotosián	Año 2013											
RIU	Silio	Estación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Barrancas	Rio Barrancas	CL 0	0,63	0,56	0,63	0,71	0,62	0,57	0,62	0,59	0,56	0,59	0,61	0,69
Grande	Bardas Blancas	CL 1	0,64	0,66	0,63	0,69	0,66	0,62	0,61	0,61	0,59	0,63	0,61	0,60
	Buta Ranquil	CL 2	0,63	0,62	0,65	0,69	0,65	0,60	0,62	0,62	0,60	0,62	0,62	0,62
	Desfiladero Bayo	CL 3	0,63	0,67	0,65	0,65	0,62	0,61	0,63	0,63	0,59	0,61	0,63	0,59
Oslavada	Punto Unido	CL 4	0,64	0,64	0,58	0,65	0,66	0,70	0,65	0,62	0,60	0,62	0,65	0,60
Colorado	Pasarela Medianito	CL 5	0,64	0,67	0,65	0,67	0,66	0,68	0,64	0,62	0,60	0,62	0,61	0,64
	Casa de Piedra	CL 6	0,63	0,60	0,67	0,68	0,68	0,69	0,69	0,68	0,65	0,66	0,62	0,64
	Juliá y Echarren	CL 7	0,63	0,61	0,66	0,69	0,67	0,66	0,67	0,68	0,65	0,67	0,65	0,64

GLOSARIO

Agua ultrapura Tipo I ASTM: agua preparada por destilación, tratada por medio de una mezcla de resinas de intercambio iónico de manera que tenga una conductividad final máxima de 0,056 μS/cm y filtrada a través de una membrana de 0,2 μm de diámetro de poro. Este tipo de agua es utilizado en aplicaciones que requieren mínimas interferencias y máxima precisión y exactitud. Estas incluyen, entre otras, espectrofotometría de absorción atómica y de emisión de llama, análisis de metales traza, preparación de soluciones estándar y soluciones *buffer*.

Agua Tipo IV ASTM: agua preparada por destilación, intercambio iónico u ósmosis inversa y con una conductividad final máxima de 5,000 µS/cm.

Analito: sustancia específica a ser determinada en un ensayo o análisis.

Anfípodo: artrópodo caracterizado por tener sus apéndices locomotores iguales.

ANOVA: *Analysis of Variance* (Análisis de la Varianza). El análisis de la varianza de una vía es una prueba estadística que permite comparar varios grupos de observaciones, todas las cuales son independientes entre sí y posiblemente tienen una media diferente para cada grupo. Permite decidir si las medias son iguales o no.

ASTM: sigla de *American Society for Testing and Materials.*

Bentónico: perteneciente al bentos.

Bentos: todos los organismos que viven en el fondo de un cuerpo de agua, ya sea en la superficie del mismo (epibentos) o bien enterrados en el sedimento (endobentos). Pueden ser vegetales (fitobentos) o animales (zoobentos).

Biodisponibile: fracción del total de una sustancia química presente en el ambiente circundante que puede ser incorporada por organismos. El ambiente incluye agua, sedimentos de fondo, partículas suspendidas y alimentos.

Biomarcador: cambio inducido por un contaminante en los componentes bioquímicos o celulares de un proceso, estructura o función, el cual puede ser medido en un sistema biológico. El empleo de biomarcadores se basa en el concepto de que la toxicidad primaria de un contaminante generalmente se manifiesta a niveles bioquímicos y moleculares (cambios en actividades enzimáticas, ADN, etc.) y más tarde a niveles de organela, célula, tejido, organismo y eventualmente población.

Biota: conjunto de organismos (animales o vegetales) que viven en un área determinada.

Blanco de campo: blanco preparado con agua ultrapura (Tipo I ASTM) de calidad verificada, envasado en campo en un recipiente del mismo lote que va a ser utilizado para las muestras. Es sometido a los mismos procedimientos de preservación, condiciones y tiempo de almacenamiento que las muestras. Su objetivo es poner de manifiesto cualquier anomalía que pueda existir en el procedimiento de limpieza de los envases, introducción de contaminantes en la

muestra por los conservantes (ácidos), manipulación de los envases en campo para la extracción y preservación de la muestra.

Blanco de campo adicionado: se prepara en campo adicionando una cantidad conocida de un estándar (trazable al Sistema Internacional de Unidades, SI) de la sustancia en estudio a un blanco de agua ultrapura (Tipo I ASTM), preparado de igual manera que el blanco de campo. Indica la recuperación de la sustancia adicionada en el análisis de laboratorio excluyendo los efectos de la matriz (producida por sustancias o materiales presentes en la muestra, diferentes del analito a medir). Si se analizan réplicas del blanco adicionado, se obtiene además un indicio de la precisión general que puede estar afectada por las operaciones de campo y analíticas.

Columna de agua: masa de agua comprendida entre la superficie y el fondo. Incluye los sólidos en suspensión.

Conductividad eléctrica: es una medida de la capacidad de una solución acuosa de transportar una corriente eléctrica. Esta capacidad depende de la presencia de iones, su concentración total, su movilidad, su valencia y de la temperatura a la cual se efectúa la medición. En el Sistema Internacional de Unidades la conductividad se expresa en milisiemens por metro (mS/m). En la práctica es más corriente el empleo de microsiemens por centímetro (µS/cm).

Control de Calidad: técnicas operativas y actividades que son empleadas para cumplir con los requisitos de la calidad.

Corer: tubo de acrílico empleado para el muestreo de sedimentos de fondo. Permite extraer testigos que posibilitan el estudio de diferentes estratos.

Cromatografía en fase gaseosa: técnica analítica para la separación y cuantificación de sustancias químicas basada en las diferencias en la partición de las mismas entre una fase móvil (transportada en un flujo de gas) y otra estacionaria (contenida en un soporte empaquetado en una columna de gran longitud y pequeño diámetro, por la cual circula el flujo de gas). Una vez separadas las sustancias son identificadas mediante un detector, del cual existen diferentes tipos, entre ellos el de espectrometría de masas.

Crustáceo: artrópodos mandibulados de respiración branquial, poseen dos pares de antenas y presentan el cuerpo cubierto generalmente por un caparazón calcáreo, la cabeza y el tórax soldados formando un cefalotórax y las patas dispuestas unas para la prensión y otras para la locomoción.

Draga Eckman: dispositivo de acero inoxidable constituido por una caja que posee dos quijadas del mismo material en su parte inferior, que permiten el cierre para retener los sedimentos de fondo extraídos y la apertura para la descarga, homogeneizado y envasado de los mismos. La draga es operada desde una embarcación y el cierre es comandado desde la superficie mediante un mensajero (peso) que se deja caer guiado por el cable de acero que sujeta a la draga. Existen otros tipos de dragas empleadas con el mismo fin.

Ensayos ecotoxicológicos: experimentos de laboratorio utilizados para evaluar los efectos tóxicos potenciales de muestras de agua o sedimentos de un cuerpo receptor sobre los organismos vivos. Los efectos se evalúan a través de la

observación en poblaciones de los organismos de ensayo de variables establecidas (mortalidad, reproducción, crecimiento, etc.).

Ensayo toxicológico crónico: estudio crónico en el cual todos los estadios de la vida de un organismo son expuestos a un material en ensayo. Generalmente, un ensayo durante el ciclo de vida involucra el ciclo reproductivo completo del organismo. Un ensayo durante un ciclo de vida parcial incluye las partes del ciclo de vida que se han observado como especialmente sensibles a la exposición a una sustancia química.

Espectrometría de absorción atómica: técnica analítica basada en el empleo del espectro de absorción de átomos aislados para determinar concentraciones de elementos.

Espectrometría de emisión atómica por plasma inductivo: técnica analítica basada en el empleo de plasma (gas neutro parcialmente ionizado). El gas empleado es el argón y la energía que lo mantiene en funcionamiento es transmitida inductivamente mediante una bobina por la que circula radiofrecuencia. La muestra en aerosol es introducida por medio de un inyector en la parte central del plasma, en la cual existen temperaturas muy elevadas. De esta manera, los elementos presentes en la muestra son ionizados y posteriormente analizados mediante un detector.

Espectrometría de masas: técnica analítica basada en el empleo del movimiento de iones en campos eléctricos y magnéticos para clasificarlos de acuerdo a su relación masa-carga. Por medio de esta técnica las sustancias químicas se identifican separando los iones gaseosos en campos eléctricos y magnéticos. La espectrometría de masas provee información cualitativa y cuantitativa sobre la composición atómica y molecular de materiales inorgánicos y orgánicos.

Estándar (de medición): estándares físicos o químicos empleados para propósitos de calibración o validación tales como: drogas de pureza establecida y sus correspondientes soluciones de concentración conocida, pesas patrón, etc. Los materiales de referencia son una categoría de estándares de medición.

Exactitud: concordancia entre un valor medido y el valor aceptado o "verdadero". Se expresa por el error porcentual (E%) que es el cociente de la diferencia entre el valor medido y el valor aceptado o "verdadero" y el valor verdadero, expresado como porcentaje.

Estándar trazable al Sistema Internacional de Unidades (SI): estándar cuyo valor puede ser relacionado al/los patrón/es correspondiente/s del Sistema Internacional de Unidades a través de una cadena ininterrumpida de comparaciones.

Factor de cobertura (k): factor numérico usado como multiplicador de la incertidumbre estándar combinada para obtener la incertidumbre expandida para un determinado nivel de confianza. Habitualmente, para una distribución normal, se usa una factor de cobertura (k) = 2, para dar un nivel de confianza de aproximadamente el 95%.

Fracción recuperable total (metales): concentración de un metal obtenida por digestión ácida débil de la muestra. Esta fracción es considerada biodisponible.

Hidrocarburos alifáticos: familia de compuestos constituidos por carbono e hidrógeno que forman cadenas abiertas (lineales o ramificadas) o cerradas y que pueden presentar o no dobles enlaces entre carbonos.

Hidrocarburos aromáticos polinucleares (HAPs): grupo de sustancias químicas orgánicas que poseen una estructura formada por dos o más anillos bencénicos fusionados. Los anillos bencénicos están constituidos por cadenas hidrocarbonadas cerradas formando ciclos en los cuales se alternan uniones dobles y simples entre átomos de carbono vecinos. Los HAPs con dos a cinco anillos bencénicos son los de mayor significación ambiental y para la salud humana.

Incertidumbre de medición: parámetro asociado con el resultado de una medición que caracteriza la dispersión de los valores que razonablemente pueden ser atribuidos al mesurando.

Incertidumbre estándar (u): Incertidumbre del resultado de una medición expresada como desviación estándar.

Incertidumbre estándar combinada (u_c): Incertidumbre estándar del resultado de una medición cuando este resultado es obtenido a partir de los valores de otras magnitudes; se caracteriza por el valor numérico obtenido aplicando el método usual para la combinación de varianzas, de modo tal que la incertidumbre combinada y sus componentes se expresan en la forma de desviaciones estándar.

Incertidumbre expandida (U): incertidumbre estándar (incertidumbres estándar combinadas) multiplicadas por un factor de cobertura k para dar un nivel de confianza particular.

Límite de cuantificación del método (LCM): es la concentración por encima de la cual pueden obtenerse resultados cuantitativos con un nivel de confianza especificado.

Macrófita: planta vascular grande especialmente de un cuerpo de agua, enraizada o flotante.

Material de Referencia: un material o sustancia en la cual una o más de sus propiedades son suficientemente homogéneas y han sido bien establecidas como para ser usado para la calibración de un aparato, la evaluación de un método de medición o para la asignación de valores a materiales.

Material de referencia certificado: material de referencia, acompañado de su correspondiente certificado, del cual una o más de sus propiedades se establecen con valores certificados mediante un procedimiento, el cual establece su trazabilidad a una realización exacta de la unidad en la cual los valores de la propiedad son expresados, y para los cuales cada valor certificado posee una incertidumbre asociada, definida con un nivel de confianza establecido.

Metal pesado: metales de densidad mayor que 4,5 g/cm³ y relativamente elevada masa atómica. El término también designa un grupo de metales que presentan marcada toxicidad para los organismos vivos. También se los denomina elementos traza.

Metaloides: grupos de elementos químicos cuyas propiedades son intermedias entre los metales y los no metales.

Muestra fortificada: muestra a la cual se le ha adicionado cantidades conocidas de los analitos de interés y que se emplea para medir los efectos de la matriz de la muestra puede tener sobre los métodos analíticos (usualmente sobre la recuperación del analito).

Monitoreo: observación periódica y sistemática de niveles de contaminantes en el ambiente.

Nivel de Efecto Probable: nivel por encima del cual se espera que ocurran frecuentemente efectos adversos.

pH: valor que representa la acidez o alcalinidad de una solución acuosa. Se define como el logaritmo negativo de la actividad del ión hidrógeno.

Plancton: conjunto de organismos de pequeño tamaño (protozoarios y algas microscópicas) que viven en suspensión en las aguas (marinas o continentales) y constituyen los primeros eslabones de las cadenas tróficas.

Precisión: denota la concordancia entre los valores numéricos de dos o más mediciones realizadas sobre una misma muestra homogénea bajo las mismas condiciones. El término se emplea para describir la reproducibilidad de la medición o del método. Puede ser expresada mediante la desviación estándar.

Recuperación: habitualmente expresada como porcentaje (%R), expresa la relación entre la concentración de una sustancia adicionada a una muestra y la concentración hallada por medio del análisis.

Réplica: es una muestra repetida de la matriz en estudio. Se obtiene por división de una muestra (dos o más veces) en alícuotas separadas. Tiene por objeto medir la precisión general de las operaciones de muestreo y de los métodos analíticos empleados.

Réplica adicionada: se prepara en idénticas condiciones que la anterior pero adicionándole una cantidad conocida de la sustancia en estudio. Mide la recuperación y la precisión general afectada por las operaciones de campo y analíticas más el efecto de la matriz.

Sedimentos: material fragmentado, que proviene de la meteorización de las rocas y que es transportado principalmente por el agua y el aire o es generado por otros procesos tales como la precipitación química o la excreción por organismos. El término se aplica usualmente al material en suspensión en agua o recientemente depositado del estado suspendido.

Sedimentos de fondo: sedimentos que constituyen el lecho de un cuerpo de agua corriente o estancado.

Sonicación: técnica aplicada en la preparación de muestras (desagregación, homogeneización, reducción del tamaño de partícula, etc.) para su posterior análisis basada en el empleo de energía ultrasónica.

Sustancia tóxica: sustancia capaz de producir algún efecto nocivo en un sistema biológico, daño a sus funciones o la muerte. Desde el punto de vista de la preservación y utilización de los cuerpos de agua superficiales, se puede definir que una sustancia se vuelve tóxica cuando está presente en el medio ambiente acuático (columna líquida, sedimentos u organismos acuáticos) en concentraciones que interfieren con un uso deseable del recurso hídrico por su impacto negativo sobre la salud humana o sobre el ecosistema acuático.

Toxicidad crónica: efecto que involucra un estímulo que se mantiene durante un tiempo prolongado (varias semanas a años), dependiendo del ciclo reproductivo de las especies acuáticas. Los efectos tóxicos crónicos se manifiestan por respuestas biológicas de progreso relativamente lento y larga duración.

Trazabilidad: propiedad del resultado de una medición o el valor de un estándar por el cual el mismo puede ser relacionado a referencias establecidas, usualmente estándares nacionales o internacionales, a través de una cadena ininterrumpida de comparaciones, a las cuales se les puede asignar una incertidumbre.

Valor guía: concentración numérica límite o enunciado narrativo recomendado para sostener y mantener un uso del agua determinado (o de otro compartimento del ambiente acuático, tal como sedimentos de fondo)

Zooplancton: animales (principalmente microscópicos) que flotan en la columna de agua (algunos pueden desplazarse pequeñas distancias en busca de alimento).

Bibliografía

- APHA, AWWA, WEF, 1999, Standard Methods for the Examination of Water and Wastewater, 20th ed.
- CCME (Canadian Council of Ministers of the Environment), 2002, *Canadian Sediment Quality Guidelines for the Protection of Aquatic Life Introduction—*Canadian Environmental Quality Giuidelines.
- CCME (Canadian Council of Ministers of the Environment), 1993, *Guidance Manual on Sampling, Analysis, and Data Management for Contaminated Sites Volume I: Main Report Glossary –* Report CCME EPC-NCS62E.
- CCREM (Canadian Council of Resources and Environment Ministers), 1986, *Canadian Water Quality Guidelines Glossary.*
- Cortada de Kohan, N., Carro, J.M., 1978, *Estadística Aplicada, séptima edición,* Editorial Universitaria de Buenos Aires, EUDEBA, Buenos Aires.
- Gaskin, J. E., 1993, *Quality assurance in water quality monitoring General Glossary –* Ecosystem Science and Evaluation Directorate, Conservation and Protection Environment Canada, Ottawa, Ontario.
- ISO, 1993, International Vocabulary of Basic and General Terms in Metrology.
- Salas, H.J., Dos Santos, J.L., Fernícola, N., 1987, *Manual de Evaluación y Control de Sustancias Tóxicas en Aguas Superficiales*, CEPIS, OPS, OMS.

Agradecimientos

Administración Provincial del Agua de la Provincia de La Pampa, por la operación de la estación meteorológica del Puesto Caminero Policial de Casa de Piedra, según convenio COIRCO – APA.

Departamento Provincial de Aguas de la Provincia de Río Negro, por la operación de las estaciones pluviométricas de Catriel y El Gualicho, según convenio COIRCO – DPA.

Ente Casa de Piedra, por el suministro de información diaria de la erogación del caudal desde el embalse, según Norma de Manejo de Aguas.

Subsecretaría de Recursos Hídricos de la Nación, por registros hidrológicos del río Colorado en la estación Buta Ranquil y Pichi Mahuida.

Comisión Nacional de Actividades Espaciales, por el suministro de imágenes satelitales, según Convenio COIRCO - CONAE.

Universidad Nacional de Luján - Laboratorio de Estudios Ecotoxicológicos, Monitoreos Ambientales, Laboratorio CIC y Laboratorio Segemar - Intemin, por el esmero y dedicación en la ejecución de las tareas asignadas en el presente Programa de Calidad del Medio Acuático.

YPF SA; Petrobras Energía SA; Chevron Argentina SRL; Oldelval SA; Petrolera Entre Lomas SA; Pluspetrol - Petro Andina Resources Ltd.; Gran Tierra - Petrolífera Petroleum Américas Ltd.; Medanito SA.; San Jorge Petroleum S.A; Petroquímica Comodoro Rivadavia SA y Apache Energía Argentina SRL, por el financiamiento del Programa de Calidad de Aguas.

Armado y diseño Gerencia Técnica COIRCO Agosto 2014

Sede Operativa: Belgrano 366 - (B8000IJH) Bahía Blanca - Argentina Tel/Fax: (0291) 455-1054/3054 - coirco@coirco.gov.ar - www.coirco.gov.ar